Treatment of Lymphoma
New Therapies and Clinical Trials

Michael Crump, MD, FRCPC
Princess Margaret Hospital
University of Toronto
• General things about lymphoma
• Some information about clinical trials
• Immunotherapy: the new hot thing
• Questions and hopefully answers
Lymphoma – more than 50 different types

Treatment depends on:

- type of lymphoma
- where it is
- age, general health
Lymphoma Subtypes

Indolent

- long natural history (12-15+ years)

- remissions + relapses

- respond to many treatments

- responses/remissions less often complete, shorter with passage of time
Lymphoma Subtypes

Aggressive

• shorter period of symptoms before diagnosis

• may present in a place that is not a lymph node (stomach, sinuses, thyroid)

• treatment intent is usually “cure”—chemotherapy with or without radiation

Many B cell, most T cell lymphomas
What Determines the Outcome of Treatment for Lymphoma?

- type of lymphoma
- age
- performance status
- stage
- bulk of disease (size of lumps)
- extranodal disease
- treatment
Remission \neq Cure

- a state of being
- requires decades of followup
Completed randomized trials, data awaited:

- **DLBCL:**
 - RCHOP → lenalidomide vs no further Rx
 - RCHOP + ibrutinib BTK inhibitor or placebo
 - RCHOP v dose adjusted R-EPOCH
 - Infusional chemotherapy

- **Follicular:**
 - R-chemotherapy v lenalidomide -rituximab
Lymphoma Clinical Trials

1) Kinds of clinical research
2) Reasons for clinical trials
3) Types of clinical trials
4) Are clinical trials right for you?
Levels of Evidence

3) Clinical Trials

Phase I
Phase II
Phase III
(Phase IV)
Phase I

Question: “what happens if we give…."

- test new drugs in humans that seem promising in laboratory testing
 - how much can be given?
 - what are the side effects?
- explore mechanisms: correlative science eg. pre- and post-treatment biopsies, blood evaluation of circulating tumor DNA....

Does treatment do in people what it did in the laboratory/animal models?
Phase II

Question: “Does this treatment ‘work’”?

• What is the response rate to the new drug (% of patients whose cancer shrinks > 50%)

• What are the side effects when a larger number of patients are treated (vs small number in Phase I)

• Opportunity for correlative studies**
Phase II

How do we use Phase II information?

- Adopt as new treatment
- Add drug x to standard treatment (repeat phase I or II)
- Compare new treatment to standard of care

* Do phase II trials change practice?: only sometimes!
Doxorubicin-Based Chemotherapy Regimens Reported in phase II clinical trials

Long Term Survival (%)
Direct Comparison of 4 Chemotherapy regimens in DLBCL

Fisher, NEJM, 1993
Phase III

- compare the standard of care to something new that is potentially better or has less toxicity
- used to determine if the standard of care should change
- “controlled”: half of the patients get standard therapy
- “randomized”: participants don’t choose which
 - reduces bias
 - ensures 2 groups only differ by treatment and not stage, etc.
“Can I Be In This Clinical Trial?”

- **Eligibility Criteria** are the key
- list of “exclusions” and “inclusions”

Purpose - to be sure that the patients in the study are all “the same”
- to reduce risks to the participants
- allow accurate assessment of whether treatment works
Why Don’t All Hospitals/Doctors Study ... Immunotherapy?

Clinical Trials are:
- expensive
- time consuming
- require resources
- nurses
- pharmacists
- MD’s
- require scientific back-up
- translational research
When Does a New Treatment Become Standard?

- usually requires **randomized phase III trial** showing “significant” improvement in an **important measure**: survival, time to progression, reduced toxicity

- sometimes from Phase II (non-comparative) study: eg. Brentuximab vedotin in Hodgkin lymphoma
 - 70% response rate, relatively side effects, duration of remission 6-9 months, no other approved drug in refractory HL post-transplant
There are a few more steps though....

- Health Canada approval (pharma application)
- Pan-Canadian Oncology Drug Review (pCODR)
- Cancer Care Ontario evaluation (costs)
- Regional cancer centre implementation
Immunotherapy in Lymphoma

- Monoclonal antibodies + chemo (immunoconjugates)
- Checkpoint inhibitors – nivolumab, pembrolizumab
- Bi-specific antibodies
- CAR-T cells
B cells
- Make antibodies in response to foreign material (viruses, bacteria, etc)
- Requires exposure (vaccination)
- Requires co-operation with other cells (eg. T cells)

T cells (NK cells)
- ‘cellular’ immunity – recognize foreign cells (bacteria, viruses)
- Both types have ‘memory’ – ready to act when exposure repeated
Obinutuzimab (Gazyva)

• Anti CD20 antibody
• Same target as rituximab but with different properties
• Better ability to recruit cells of immune system to attack lymphoma
Chronic lymphocytic leukemia + chlorambucil
- better response, disease control vs rituximab
- new approved in Ontario

Indolent (follicular) lymphoma
- longer response duration after chemo + maintenance therapy than rituximab
- better response duration in patients who progressed on rituximab
Obinutuzumab vs Rituximab with chemotherapy in follicular lymphoma

Figure. KM plot of INV-assessed PFS for G-chemo and R-chemo in pts with FL

HR, 0.66; 95% CI, 0.51, 0.85; p=0.001
Checkpoint inhibitors: something really new!

Single agent activity of CI’s in cancer

Matsuki, Younes, Current treatment options in Oncology, 2016, 17:31
1) Antigen-presenting cells show bits of foreign protein to T cells to get them going (bacteria, cancer cell proteins, etc).

2) To prevent too much of an immune response, APCs express PDL1/2 to slow down the T cells.

3) Many tumor cells also express PDL1/2 to prevent T cells from attacking them (immune evasion).

4) Antibodies to PD1 or PDL1 prevent T cells from being “exhausted”, restore anti-tumor activity.
Good things about checkpoint inhibitors

• long-lasting responses seen in some patients with little toxicity
• no (rare) infusion-related side effects
• delayed response (5-10%)
Difficulties with checkpoint inhibitors

• Not all lymphomas respond
 (Hodgkin 70%; DLBCL 20-30%; FL ?)

• Immune-related site effects: autoimmunity
 – bowel inflammation
 – thyroiditis
 – skin, liver, lung, nervous system – rare

• ? indefinite treatment (cost!)
T Cells

- **T cells** are lymphocytes that play a number of roles within the immune system. After engineering, CAR-T cells have a mixture of these types.
 - **Cytotoxic T Lymphocytes (CTLs)** – directly kill cells through the release of granzymes and perforin (perforin allows granzymes to enter the targeted cell, which then activates programmed cell death: apoptosis).
 - **Helper T Cells** – act as antigen presenting cells and release modulatory cytokines
 - **Memory T Cells** – long lived cells that recall past vaccinations and infections and activate on re-infection.
 - **Regulatory T Cells** – act as T cell suppressors and prevent autoimmunity
How to program a patient’s immune cells and reinfuse them

Chimeric antigen receptor (CAR) anti-CD19 gene is inserted to generate a CAR T cell

CARs are engineered to provide the normal signals required for T cell stimulation and cancer cell killing.
CAR T cells are T cells

- Expand their numbers once inside the patient
- Change to mainly become CTLs once inside the patient
- Are affected by and affect cytokine levels (a high level of cytokine release)
- Travel throughout the body (can be collected from CSF)
- Decline to undetectable levels in about 3 - 4 weeks (? memory)
- Are killed by steroids such as prednisone
- Are subject to T cell exhaustion through the immune checkpoint

Locke et al. ASH 2015
Rossi et al. ASH 2015
Bot et al. ASH 2015
In CLL, CarT cells persisted much longer. The peak of CarT cells corresponded to CRS, occurring at a median of 9.5 days after infusion. 9/14 patients had CRS requiring intervention. 4/14 patients required ICU admission (median ICU admission was 6 days). 4 patients received tocilizumab (2 patients also received steroids) which rapidly resolved symptoms.
The Clinical Toxicities of CAR T Cells are Significant but Seemingly Transient

Cause a **cytokine release syndrome** (patients may need anti-IL-6 – tocilizumab - and/or steroids)
- Hypotension (patients can require medication for BP support)
- Fever (patients end up on antibiotics)
- Decreased cognition and/or level of consciousness (intubation in 1/6)

While harrowing, side effects seem to reverse rapidly when numbers of the CAR T cells fall (at 1 to 3 weeks) and seem to be fully reversible
Bispecific T-Cell Engagers: BiTEs

CD3 Monoclonal antibody
-binds to T-cells

Monoclonal antibody against tumour antigen
-binds to cancer cell
Bispecific T-Cell Engagers: BiTEs

Fragment that binds to T-cells

Linker

Fragment that bind to tumour cell
Bispecific T-Cell Engagers: BiTEs

BiTEs have been shown to cause cytokine storm, perhaps due to enhanced numbers of or through the artificial creation of the Immune synapse.
Results with blinatumomab in relapsed lymphomas: response rate 69% (n=35)

*patient received allogeneic stem cell transplant.
Arrows indicate ongoing response
Clinical trials that have recently been completed

- RCHOP + ibrutinib (BTK inhibitor) ABC
- CHOP vs CHOP + bendamustine + R vs lenalidomide + R
- RCHOP + lenalidomide vs CHOP vs CHOP + brentuximab vedotin (anti CD30-chemo conjugate)—T cell lymphomas
conclusions

- Many new therapies for lymphomas!
- Research and clinical trials make a difference!
- Immunotherapy really is the next big thing!
Symptoms of CRS

- condition resulting from the release of cytokines from cells targeted by antibodies, immune effector cells recruited to the tumor area, and subject’s immune cells activated.

<table>
<thead>
<tr>
<th>Organ system</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constitutional</td>
<td>Fever ± rigors, malaise, fatigue, anorexia, myalgias, arthalgias, nausea, vomiting, headache</td>
</tr>
<tr>
<td>Skin</td>
<td>Rash</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Nausea, vomiting, diarrhea</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Tachypnea, hypoxemia</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Tachycardia, widened pulse pressure, hypotension, increased cardiac output (early), potentially diminished cardiac output (late)</td>
</tr>
<tr>
<td>Coagulation</td>
<td>Elevated D-dimer, hypofibrinogenemia ± bleeding</td>
</tr>
<tr>
<td>Renal</td>
<td>Azotemia</td>
</tr>
<tr>
<td>Hepatic</td>
<td>Transaminitis, hyperbilirubinemia</td>
</tr>
<tr>
<td>Neurologic</td>
<td>Headache, mental status changes, confusion, delirium, word finding difficulty or frank aphasia, hallucinations, tremor, dymetria, altered gait, seizures</td>
</tr>
</tbody>
</table>
Side Effects of Chemotherapy

nausea + vomiting

Early: < 24 hrs after: granisetron/ondansetron
Late: 1-5 days after: domperidone, dexamethasone

nausea hints:

• clear fluids on day of chemo
• avoid foods that are too hot or cold or too spicy
• smaller, more frequent meals
Fatigue

- common with all chemotherapy
- not only due to anemia (low hemoglobin)

Some solutions:

- exercise!
- stretching, range of motion
- walking
- stay active