

Denis Claude Roy, MD, FRCPC

Director of Research, East of Montreal Hôpital Maisonneuve-Rosemont CEO, CellCAN Prof. Medicine, Université de Montréal

- Contraction Mathematican Structures - Neuropean State - Contract and the Contract of Contract and Contra New developments in Cancer Immunotherapy

Lymphoma Canada, Montreal September 16, 2017

Drug therapy for cancer

CELL therapy for cancer

STEM CELL TRANSPLANTATION

Allogeneic Hematopoietic Cell Transplantation (AHCT)

- One of the most important medical breakthrough of the last 50 years
- Can cure ~50% of refractory HCs
- By far the most effective form of cancer immunotherapy
- Cure by AHCT (the GVTE effect) is mediated by donor T cells that react against minor histocompatibility antigens (MiHAs) present on cancer cells – GVTE strength is sub-optimal

Challenge in Haploidentical Donor Transplantation

ATIR: Selective removal of GVHD-causing T-cells while retaining key innate and adaptive components of immune system

Haploidentical HSCT + ATIR: high-risk hematologic malignancies

Phase II international clinical trial: 23 patients

 Comparison with control data from an observational cohort study¹

ATIR101 significantly reduces TRM and improves OS compared to CD34+ haplo-transplants

From AHCT to MiHA-targeted Rx

 Despite its success, conventional AHCT is a rudimentary and toxic form of Tx based on injection of <u>unselected</u> T cells

 Selected→Can we select cells that will react toward cancer cells in a selective fashion?

Immune cells react against MiHA non-self peptides (protein fragments) on the surface of cancer cells

What is a Minor Histocompatibility Antigen (MiHA) ?

Leukemia cell

INSTITUTE FOR RESEARCH IN IMMUNOLOGY AND CANCER

Graft-vs-Tumor Effect is mediated by donor immune cells that recognize MiHAs on leukemic cells

Cancer Immunotherapy with H7^a-specific T cells

 Leukemia (Nat Med 2001; 7:789-794) Melanoma (Nat Med 2005;11:1222-1229)

Using Proteogenomics For MiHA Discovery

MiHA anti-leukemia therapy (GLIDE) (Genome Québec/Génome Canada/Amorchem/BioCanRx)

Antigen-specific T cells against refractory Epstein-Barr Virus infection and lymphoma

EBV-TCL-01 (NCT02580539 - JS Delisle)

ELISPOT – persistance of response (EBNA1 et LMP2)

Can Cellular Therapy be Industrialized ?

Manual

- \checkmark Translation
- × Regulatory
- × Scalable
- * Economical

Robotic Duplication

- × Translation
- ✓ Regulatory
- × Scalable
- Economical

Automated Bioreactors

- ✓ Regulatory
- ✓ Scalable
- ✓ Economical

Real time – quality monitoring

Chimeric Antigen Receptor (CAR) Technology

Brower V, The Scientist, April 1, 2015

Design of CD19-targeted CTL019

- On July 1, 2014, the FDA granted "breakthrough therapy" designation to CTL019, the anti-CD19 CAR T-cell therapy developed at the University of Pennsylvania (UPenn)
- Gene transfer technology using a lentiviral vector is used to transduce T cells to CTL019 cells
- The CTL019 CAR consists of T-cell activation domains coupled to an anti-CD19 single-chain variable fragment¹⁻³
 - Antigen-binding domain
 - Recognizes CD19 antigen on B cells
 - 4-1BB costimulatory domain
 - Increases T-cell activation and enhances cytolytic function of T cells
 - CD3-zeta chain signaling domain
 - Induces T-cell activation

1. Milone MC, et al. Mol Ther. 2009;17:1453-1464; 2. Zhang H, et al. J Immunol. 2007;179:4910-4918; 3. Kalos M, et al. Sci Transl Med. 2011;3:95ra73.

CD19 is an Ideal Tumor Target in B-Cell Malignancies

1. Scheuermann RH, et al. Leuk Lymphoma. 1995;18:385-397

Image adapted from Janeway CA, Travers P, Walport M, et al. *Immunobiology*. 5th ed. New York, NY: Garland Science; 2001:221-293; Scheuermann RH, et al. *Leuk Lymphoma*. 1995;18:385-397; and Feldman M, Marini JC. Cell cooperation in the antibody response. In: Roitt I, Brostoff J, Male D, eds. *Immunology*. 6th ed. Maryland Heights, Missouri: Mosby;2001:131-146.

CTL019 in ALL: Efficacy

Response	n/n	%
Complete response	27/30	90
Negative minimal residual disease	22/30	73
Duration of response (7 mo median follow-up)	19/27 ^a	70

^a 15 patients received no further therapy, and 4 patients withdrew from the study to receive other therapy.

- 7 patients who had achieved a CR subsequently relapsed (time to relapse ranged from 6 weeks to 8.5 months)
 - 3 patients with CD19⁻ ALL experienced relapses
 - 3 relapses developed after early loss of CTL019-modified T cells at 2 weeks to 3 months and were CD19⁺
- CTL019-modified T cells were detected in the CSF of 17 of 19 patients with evaluable specimens, which may have implications for successful disease surveillance in that compartment
 - The 2 patients with CSF blasts at infusion had no detectable CNS leukemia with a follow-up of 6 months, and no CNS relapses were observed

CTL019 in ALL: In Vivo Expansion and Long-Term Persistence

- CTL019-modified T cells were detectable in the blood by flow cytometry for up to 11 months (left)
- The probability of 6-month CTL019 persistence was 68% (95% CI, 50%-92%; right)
- CTL019 cells were observed to traffic to the CNS in pediatric patients with ALL

CTL019 in ALL: Updated Results (Pediatric)

- Data reported from 48 pediatric pts with r/r ALL, as presented at ASPHO 2015¹
- 45 of 48 pts (94%) in complete remission
- The 6-month overall survival was 81% (95% CI, 70,94; figure)

Figure: Kaplan-Meier survival curve of overall survival with number (N) of patients at each time point indicated below x axis.

A Variety of Neoplasms Arise at Different Stages of B-cell Differentiation

- CD19 expression is generally restricted to B cells and B cell precursors and, importantly, is expressed by most B-cell malignancies and is therefore an ideal target^{1,2}
- Accordingly, a number of trials are planned investigating the use of CTL019 in a range of B-cell malignancies
 NOVARTIS

1. Scheuermann RH, et al. Leuk Lymphoma. 1995;18:385-397; 2. Ghetie MA et al. Blood. 1994;83:1329-36.

Checkpoint blockade

Checkpoint inhibition: a game changer

Metastatic melanoma

Advanced lung cancer

Postow MA et al. N Engl J Med 2015;372:2006-2017.

Brahmer J et al. N Engl J Med 2015. DOI: 10.1056/NEJMoa1504627

Article

Immunity

Glycogen Synthase Kinase 3 Inactivation Drives T-bet-Mediated Downregulation of Co-receptor PD-1 to Enhance CD8⁺ Cytolytic T Cell Responses

Graphical Abstract

Authors

Alison Taylor, James A. Harker, Kittiphat Chanthong, Philip G. Stevenson, Elina I. Zuniga, Christopher E. Rudd

Correspondence cer51@cam.ac.uk

In Brief

The upstream pathway regulating PD-1 expression is not clear. Rudd and colleagues show that inhibition of the serine/threonine kinase GSK-3 upregulates T-bet expression, which decreases PD-1 expression and enhances CTL function. They demonstrate that the use of GSK-3 inhibitors in vivo inhibits PD-1 and enhances T cell clearance of viral infections.

Highlights

- GSK-3 is a key upstream kinase that contributes to inhibition of PD-1 transcription
- GSK-3 siRNAs or inhibitors block PD-1 transcription to thereby enhance CTL function
- GSK-3 inhibition enhances *Tbx21* transcription, which represses PD-1 transcription
- Use of GSK-3 inhibitors in vivo downregulates PD-1 and enhances viral clearance

Small molecule down-regulation of PD-1 reduces B16 metastatic melanoma

Christopher E Rudd

Centre d'excellence en thérapie cellulaire (CETC) Centre of Excellence in Cellular Therapy Hopital Maisonneuve-Rosemont

ECANIOLE

RÉFERVOIR D'AZOTE-LIQUIDE 03.0

omotion

CETC building

I Control and the second se

Accelerating market access of **breakthrough innovations** to fight cancer

Vision & Mission

- Vision: C3i will be Canada's catalyst for cancer immunotherapy business development
- Mission: Accelerate the discovery, commercialization and access to cancer immunotherapy

C3i's One-Stop-Shop Model

C3i Structure in 4 Business Units with Unique Combination of Key Assets

5 www.cellcan.com/en/index.php — CellCAN, Regenerative Medicine and Cell Therapy Network - Home									
The latest news and	Cellules souches: soi	8642 Videotron Ach	minifigure iron man f	Reset your password	CellCAN, Regenerativ	Google Traductio	on Ssayez Dro	opbox Ent	ChaletsAuQueb
						Home About	News Conta	ict (FR)	

MOBILIZING KNOWLEDGE

and promoting advances in regenerative medecine and cell therapy

STATE-OF-THE-ART

State-of-the-art cleanrooms to accommodate clinical grade production of human cell products.

world-renowned EXPERTISE

Key Canadian investigators and highly specialized personnel come together in the field of stem cell therapy to assist you with your research needs. EXPLORE OUR SERVICES THERAPEUTIC AREAS * TISSUE TYPES *

CELL TYPES

Customized tools for knowledge dissemination – Information booklets

For general practitionners & health care professionnals

Customized tools for knowledge dissemination – Mobile App

Are clinical trials currently underway?

~

Many clinical trials have already proven that hematopoietic stem cell transplants can play an important role for helping to treat blood disorders. Today, there are literally thousands of new clinical trials underway to explore how to improve

Remerciements

Centre de commercialisation de l'**IMMUNOTHÉRAPIE** du Cancer

- <u>Clinical transplant teams</u>
- S Lachance, J Roy, S Cohen, I Ahmad, T Kiss
- C Perreault, JS Delisle, G Sauvageau,
- L Bernard, N Bambace (HMR Montreal)
- I Walker, R Foley (Hamilton, Canada)
- J Maartens (Leuven, Belgium)
- P Lewalle (Brussels, Belgium)
- D Selleslag (Brugges, Belgium)
- E Olavarria (London, England)
- S Mielke (Wuerzburg, Germany)
- M Levings, K Schultz (Vancouver, Canada)
- D Kim, H Messner, D Wall (Toronto, Canada)
- D Allan, C Bredeson, D Stewart (Ottawa, Canada)
- D Wall, D Szwajcer (Winnipeg, Canada)
- L West, S Maiers (Edmonton, Canada)
- H Ly (ICM, Montreal, Canada)
- <u>Cell manufacturing teams</u>
- M Giroux, M Corriveau, J Darwiche (HMR, Montreal)
- H Bonig (Frankfurt, Germany)

DC Roy laboratory

V Dave, S Thiant, D Yared, R Sidi Boumedine, J Trottier
JP Bastien, MP Giard, F Larochelle, C Leboeuf, S Blaise
N Zeidan, C Tebid, E Cournoyer, S Lepine, MP Lachambre

