## **Treatment of Lymphoma New Therapies and Clinical Trials**

Michael Crump, MD, FRCPC Princess Margaret Hospital University of Toronto



#### General things about lymphoma

- Some information about clinical trials
- Immunotherapy: the new hot thing

Questions and hopefully answers

Lymphoma – more than 50 different types

Treatment depends on:

- type of lymphoma
- where it is
- age, general health

## Lymphoma Subtypes

Indolent - long natural history (12-15+ years)

- remissions + relapses

- respond to many treatments
- responses/remissions less often complete, shorter with passage of time

## Lymphoma Subtypes

Aggressive

- shorter period of symptoms before diagnosis
- may present in a place that is not a lymph node (stomach, sinuses, thyroid)
- treatment intent is usually "cure"—chemotherapy with or without radiation

Many B cell, most T cell lymphomas

## What Determines the Outcome of Treatment for Lymphoma?

- type of lymphoma
- age
- performance status
- stage
- bulk of disease (size of lumps)
- extranodal disease
- treatment



a state of being requires decades of followup

# Completed randomized trials, data awaited:

- DLBCL:
  - **– RCHOP**  $\rightarrow$  lenalidomide vs no further Rx
  - RCHOP + ibrutinib BTK inhibitor or placebo
  - RCHOP v dose adjusted R-EPOCH
    - Infusional chemotherapy
- Follicular:

R-chemotherapy v lenalidomide -rituximab

# Lymphoma Clinical Trials

- 1) Kinds of clinical research
- 2) Reasons for clinical trials
- 3) Types of clinical trials
- 4) Are clinical trials right for you?

## **Levels of Evidence**

3) Clinical Trials

Phase I

Phase II

Phase III

(Phase IV)

## <u>Phase I</u>

Question: "what happens if we give ...."

- test new drugs in humans that seem promising in laboratory testing
  - how much can be given?
  - what are the side effects?
- explore mechanisms: correlative science eg. pre- and post-treatment biopsies, blood evaluation of circulating tumor DNA....

Does treatment do in people what it did in the laboratory/animal models?



#### Question: "Does this treatment 'work"?

- What is the response rate to the new drug (% of patients whose cancer shrinks > 50%)
- What are the side effects when a larger number of patients are treated (vs small number in Phase I)
- Opportunity for correlative studies\*\*



How do we use Phase II information?

- Adopt as new treatment
- Add drug x to standard treatment (repeat phase I or II)
- Compare new treatment to standard of care

\* Do phase II trials change practice?: only sometimes!

#### Doxorubicin-Based Chemotherapy Regimens Reported in phase II clinical trials



## Direct Comparison of 4 Chemotherapy regimens in DLBCL



Fisher, NEJM, 1993

## <u>Phase III</u>

- compare the standard of care to something new that is potentially better or has less toxicity
- used to determine if the standard of care should change
- "controlled": half of the patients get standard therapy
- "randomized": participants don't choose which
  - reduces bias
  - ensures 2 groups only differ by treatment and not stage, etc.

### "Can I Be In This Clinical Trial?"

- Eligibility Criteria are the key
- list of "exclusions" and "inclusions"
- Purpose to be sure that the patients in the study are all "the same"
  - to reduce risks to the participants
  - allow accurate assessment of whether treatment works

## Why Don't All Hospitals/Doctors Study ... Immunotherapy?

#### Clinical Trials are:

- expensive
- time consuming
- require resources

- nurses
- pharmacists
- MD's
- require scientific back-up

-translational research

## When Does a New Treatment Become Standard?

 usually requires randomized phase III trial showing "significant" improvement in an <u>important measure</u>: survival, time to progression, reduced toxicity

- sometimes from Phase II (non-comparative) study: eg.
  Brentuximab vedotin in Hodgkin lymphoma
  - 70% response rate, relatively side effects, duration of remission 6-9 months, no other approved drug in refractory HL post-transplant

#### There are a few more steps though....

- Health Canada approval (pharma application)
- Pan-Canadian Oncology Drug Review (pCODR)
- Cancer Care Ontario evaluation (costs)
- Regional cancer centre implementation

## Immunotherapy in Lymphoma

- Monoclonal antibodies + chemo (immunoconjugates)
- Checkpoint inhibitors nivolumab, pembrolizumab
- Bi-specific antibodies
- CAR-T cells

#### **B** cells

- Make antibodies in response to foreign material (viruses, bacteria, etc)
- Requires exposure (vaccination)
- Requires co-operation with other cells (eg. T cells)

#### T cells (NK cells)

- 'cellular' immunity recognize foreign cells (bacteria, viruses)
- Both types have 'memory' ready to act when exposure repeated

## **Obinutuzimab (Gazyva)**

- Anti CD20 antibody
- Same target as rituximab but with different properties
- Better ability to recruit cells of immune system to attack lymphoma



## Obinutuzimab

Chronic lymphocytic leukemia + chlorambucil

- better response, disease control vs rituximab
- new approved in Ontario

#### Indolent (follicular) lymphoma

- longer response duration after chemo + maintenance therapy than rituximab
- better response duration in patients who progressed on rituximab

## **Obinutuzumab vs Rituximab with chemotherapy in follicular lymphoma**



#### Checkpoint inhibitors: something really new! Single agent activity of Cl's in cancer



Matsuki, Younes, Current treatment options in Oncology, 2016,17:31

### How does this work?

1) antigen presenting cells show bits of foreign protein to T cells to get them going (bacteria, cancer cell proteins, etc)

4) Antibodies to PD1 or PDL1 prevent T cells from being "exhausted", restore anti-tumor activity



#### Good things about checkpoint inhibitors

- long-lasting responses seen in some patients with little toxicity
- no (rare) infusion-related side effects
- delayed response (5-10%)

## **Difficulties with checkpoint inhibitors**

- Not all lymphomas respond (Hodgkin 70%; DLBCL 20-30%; FL ?)
- Immune-related site effects: autoimmunity
  - bowel inflammation
  - thyroiditis
  - skin, liver, lung, nervous system rare
- ? indefinite treatment (cost!)

# **T** Cells

- T cells are lymphocytes that play a number of roles within the immune system. After engineering, CAR-T cells have a mixture of these types.
  - Cytotoxic T Lymphocytes (CTLs) directly kill cells through the release of granzymes and perforin (perforin allows granzymes to enter the targeted cell, which then activates programmed cell death: apoptosis).
  - Helper T Cells act as antigen presenting cells and release modulatory cytokines
  - Memory T Cells long lived cells that recall past vaccinations and infections and activate on re-infection.
  - Regulatory T Cells act as T cell suppressors and prevent autoimmunity

# How to program a patient's immune cells and reinfuse them



Kochenderfer and Rosenberg Nat. Rev. Clin. Oncol. 2013

#### Chimeric antigen receptor (CAR) anti-CD19 gene is inserted to generate a CAR T cell



Kochenderfer and Rosenberg *Nat. Rev. Clin. Oncol.* 2013. Kochenderfer et al. *J. Clin. Oncol.* 2014.

# CARs are engineered to provide the normal signals required for T cell stimulation and cancer cell killing



Srivastava and Riddell Trends Immunol. 2015.

### **CAR T cells are T cells**

- Expand their numbers once inside the patient
- Change to mainly become CTLs once inside the patient
- Are affected by and affect cytokine levels (a high level of cytokine release)
- Travel throughout the body (can be collected from CSF)
- Decline to undetectable levels in about 3 4 weeks (? memory)
- Are killed by steroids such as prednisone
- Are subject to T cell exhaustion through the immune checkpoint

John et al. *Clin. Cancer Res.* 2013 Brentjens et al. *Sci. Transl. Med.* 2014 Kochenderfer et al. *J. Clin. Oncol.* 2014 Locke et al. ASH 2015 Rossi et al. ASH 2015 Bot et al. ASH 2015





- In CLL, CarT cells persisted much longer
- The peak of CarT cells corresponded to CRS, occuring at a median of 9.5 days after infusion
- 9/14 patients had CRS requiring intervention
- 4/14 patients required ICU admission (median ICU admission was 6 days)
- 4 patients received tocilizumab (2 patients also received steroids) which rapidly resolved symptoms.

#### The Clinical Toxicities of CAR T Cells are Significant but Seemingly Transient

Cause a **cytokine release syndrome** (patients may need anti-IL-6 – tocilizumab - and/or steroids)

- Hypotension (patients can require medication for BP support)
- Fever (patients end up on antibiotics)
- Decreased cognition and/or level of consciousness (intubation in 1/6)

While harrowing, side effects seem to reverse rapidly when numbers of the CAR T cells fall (at 1 to 3 weeks) and seem to be fully reversible

# Bispecific T-Cell Engagers: BiTEs



CD3 Monoclonal antibody -binds to T-cells





Monoclonal antibody against tumour antigen -binds to cancer cell



# **Bispecific T-Cell Engagers: BiTEs**

Fragment that binds to T-cells

Linker

Fragment that bind to tumour cell



## **Bispecific T-Cell Engagers: BiTEs**



Immune synapse

BiTEs have been shown to cause cytokine storm, perhaps due to enhanced numbers of or through the artificial creation of the Immune synapse

#### **Results with blinatumomab in relapsed lymphomas: response rate 69%** (n=35)

Duration of Response for All Responding Patients Who Received Blinatumomab 60 µg/m<sup>2</sup>/day (Target Dose) During the First Cycle



Median duration of response was 404 (95% confidence interval, 207—1129) days

\*patient received allogeneic stem cell transplant. Arrows indicate ongoing response

#### RCHOP + ibrutinib (BTK inhibitor) ABC

#### bendamustine + R vs lenalidomide + R

RCHOP + lenalidomide CHOP vs CHOP + brentuximab vedotin (anti CD30-chemo conjugate)—T cell lymphomas

# Clinical trials that have recently been completed

# conclusions

- Many new therapies for lymphomas!
- Research and clinical trials make a difference !
- Immunotherapy really is the next big thing!



#### Symptoms of CRS

 condition resulting from the release of cytokines from cells targeted by antibodies, immune effector cells recruited to the tumor area, and subject's immune cells activated.

| Organ system     | Symptoms                                                                                                                                                       |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Constitutional   | Fever ± rigors, malaise, fatigue, anorexia, myalgias, arthalgias, nausea, vomiting, headache                                                                   |
| Skin             | Rash                                                                                                                                                           |
| Gastrointestinal | Nausea, vomiting, diarrhea                                                                                                                                     |
| Respiratory      | Tachypnea, hypoxemia                                                                                                                                           |
| Cardiovascular   | Tachycardia, widened pulse pressure, hypotension, increased<br>cardiac output (early), potentially diminished cardiac output<br>(late)                         |
| Coagulation      | Elevated D-dimer, hypofibrinogenemia ± bleeding                                                                                                                |
| Renal            | Azotemia                                                                                                                                                       |
| Hepatic          | Transaminitis, hyperbilirubinemia                                                                                                                              |
| Neurologic       | Headache, mental status changes, confusion, delirium, word<br>finding difficulty or frank aphasia, hallucinations, tremor,<br>dymetria, altered gait, seizures |

## **Side Effects of Chemotherapy**

nausea + vomiting

*Early:* < 24 hrs after: granisetron/ondansetron</li>*Late:* 1-5 days after: domperidone, dexamethasone

#### nausea hints:

- clear fluids on day of chemo
- avoid foods that are too hot or cold or too spicy
- smaller, more frequent meals

## Fatigue

- common with all chemotherapy
- not only due to anemia (low hemoglobin)

Some solutions:

- exercise!
- stretching, range of motion
- walking
- stay active