

LYMPHOMA | LYMPHOME CANADA | CANADA

Dr. Isabelle Bence-Bruckler

Chronic Lymphocytic Leukemia

Prolonged clinical course "Chronic"

A particular type of white blood cell – B lymphocyte "Lymphocytic"

Cancer of white blood cells "Leukemia" – white blood

Small Lymphocytic Lymphoma

Prolonged clinical course "Small"

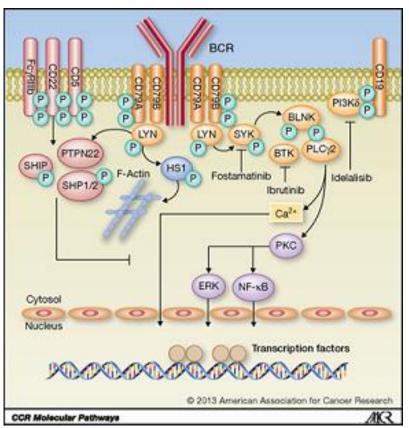
A particular type of blood cell – B lymphocyte "Lymphocytic"

Cancer of white blood cells "Lymphoma" – white blood

Same disease. Different location.

CLL & SLL look the same under a microscope.

If more cancer cells are in the lymphatic system:


If more cancer cells are in the blood: CLL

We refer to both as CLL in this presentation unless there is something specific where we have to distinguish between the two.

CLL cells depend on extra-cellular signals that are transmitted by the B cell receptor

Binding to the BCR provides a survival signal "feed me"

Important mediators that transmit BCR signals are:

BTK, the target of ibrutinib PI3k, the target of Idelalisib

Causes

- We do not know what causes most cases of CLL.
- There is no way to prevent CLL.
- You cannot catch CLL from someone else.
- In some families, more than one blood relative has CLL.

Symptoms

Symptoms from low white blood cells

Recurrent infections

Symptoms from low red blood cells (anemia)

Shortness of breath and fatigue

Symptoms from low platelets

Bleeding or bruising

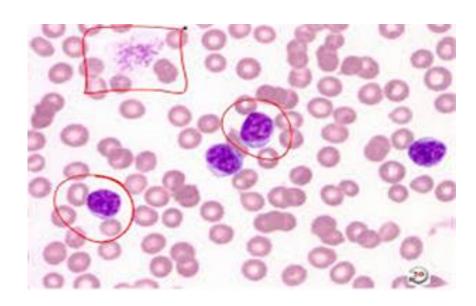
Other

- Symptoms from consequences of enlarged lymph nodes: may affect internal organs (kidneys- back pain, lungs- cough, abdomen – stomach pain)
- "B symptoms": fevers, night sweats and weight loss
- Profound fatigue

Complete blood count (CBC)

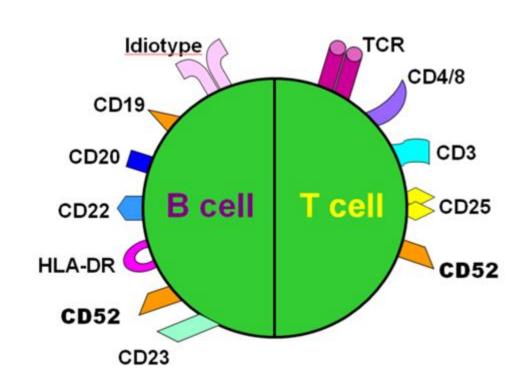
Hematology Reports

SPECIMEN: 3 cc EDTA BLOOD (Lavender Top)							
ANALYTE	RESULT		<u>UNIT</u>	REFERENCE RANGE			
	LOW	NORMAL	HIGH				
Hemoglobin (Hb)	12.4			g/dl	13.7 - 16.3		
Total RBC		6.4		x10^12/I	4.5 - 6.5		
Hct	41			%	41.9 - 48.7		
MCV	63			fl	75.0 - 95.0		
MCH	19			pg	26.0 - 32.0		
MCHC	30			g/dl	32.0 - 36.0		
Platelet Count		240		x10^9/I	150.0 - 400.0		
WBC Count (TLC)		7.7		x10^9/I	4.0 - 11.0		
Neutrophils		59		%	40.0 - 75.0		
Lymphocytes		34		%	20.0 - 45.0		
Monocytes		03		%	2.0 - 10.0		
Eosinophils		04		%	1.0 - 6.0		


No symptoms in 30-40% of people

lymphocytosis —

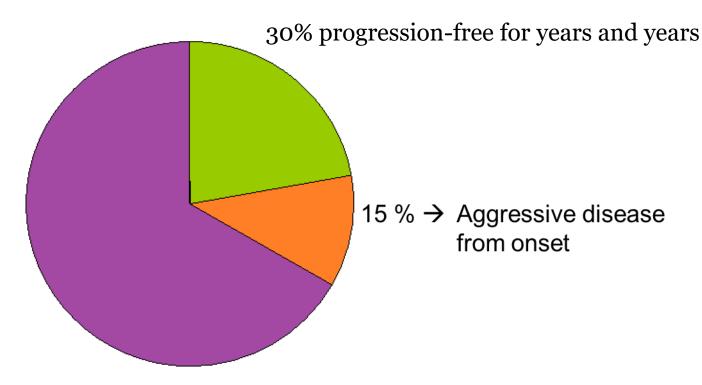
Peripheral blood smear



- Lymphocytosis
- "Smudge" cells

Flow cytometry (a blood test)

- Reads the cell's surface like a barcode
- Detects extremely low levels of CLL in blood (or marrow)
- CLL: CD19+,
 CD20+, CD200+,
 CD23+, CD5+



How CLL may progress over time

Majority → Median of 5 years without symptoms followed by progression and complications

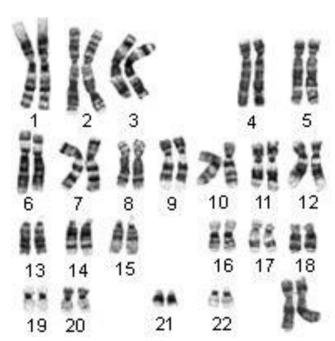
Rai Staging System

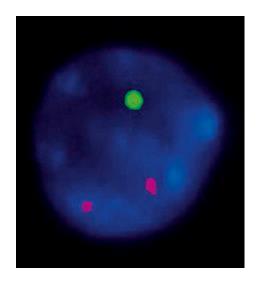
Rai Classification System

Stage	Description	Risk Status (Modified Rai)
0	Lymphocytosis, lymphocytes in blood >5.0 x 109/L	Low
1	Stage 0 with enlarged node(s)	Intermediate
11	Stage 0-I with enlarged spleen, enlarged liver, or both	Intermediate
III	Stage 0-II with anemia (hemoglobin <110 g/L)	High
IV	Stage 0–III with low platelets (<100,000)	High

Adapted from Hallek M, et al. *Blood*. 2008;111(12):5446-5556.

Immunoglobulin gene mutation status (a research blood test)

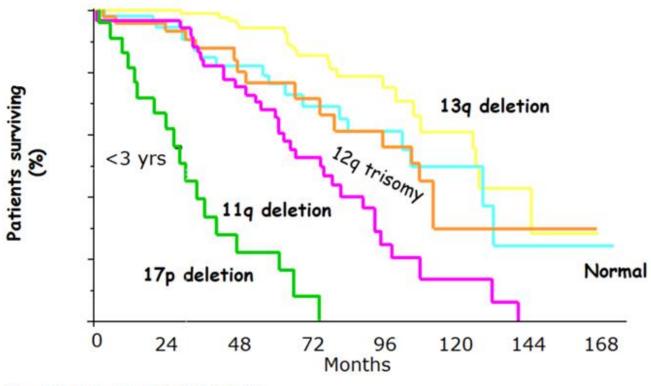

- -Also called V-gene mutational status
- -A given patient's CLL can have a mutated or unmutated V gene test result
- -It stays the same way throughout the years
- -The CLL may behave more aggressively if it is unmutated
- -Currently remains a research test used mainly in clinical trials only


FISH status:

chromosome abnormalities can be predictors of response to some treatments

Normal karyotype: 46 chromosomes

Missing one green signal: "deletion" of a chromosome arm



Fluorescence in situ hybridization

Deletion in chromosome 17p (TP53 gene) is the most important predictor of response – but we now have effective therapies for this

Döhner H, et al. N Engl J Med. 2000;343:1910-1916.

Richter's Transformation: more aggressive than CLL

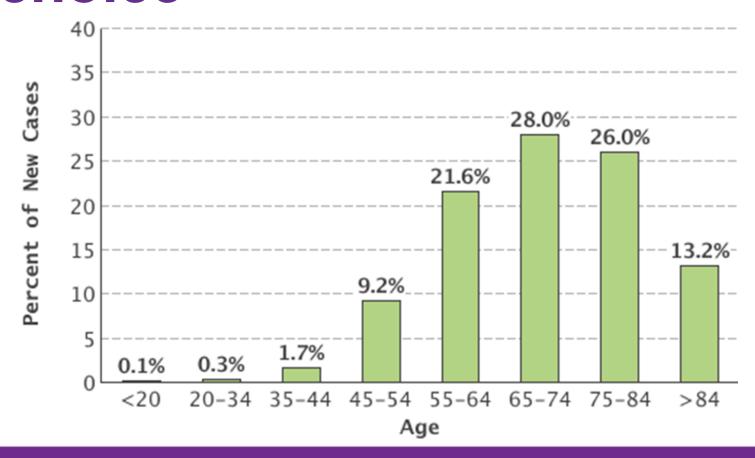
- 1928 Maurice Richter
- Rapid clinical change with the rise of a biologically aggressive subclone of large B cells
- Results in Diffuse Large B Cell Lymphoma
- Incidence varies in literature (2-15%)
- Risks that can lead to this are poorly understood

Principles of CLL treatment

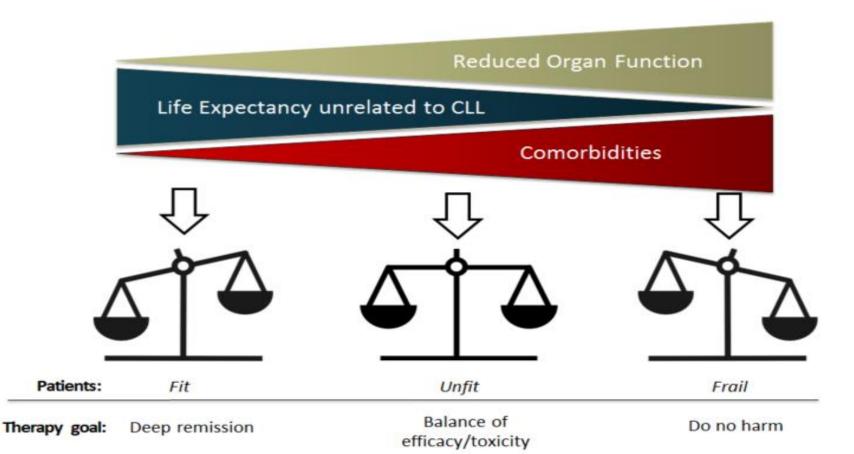
- Establish treatment goals
- Establish prognostic factors (FISH test)
- Decide on
 - standard therapy: based on consensus guidelines from published Phase 3 randomized clinical trials and availability of drugs
 - <u>clinical trials</u>: novel therapies or novel combination therapies not otherwise available as standard of care

Watch and wait

- Synonyms: observation, active surveillance or deferred therapy
- Suitable for patients with no symptoms or organ dysfunction
- Rationale:
 - No improvement in overall survival to start therapy before needed
 - Chemotherapy can induce symptoms (side effects) in an asymptomatic patient
 - The best responses to a regimen occur with the first exposure to the drugs (i.e. less effective the second time), therefore usually reserve best treatments for when needed.


Indications for treatment

- Symptoms
 - Severe fatigue, fevers, night sweats, pain from enlarged nodes
- Organ dysfunction
 - Bone marrow dysfunction (low blood counts), nodes compressing organs
- (Rapid lymphocyte doubling time < 6 months)
- Complications of CLL not responding to therapy
 - Auto-immune hemolytic anemia or ITP (very low platelets)


Age can affect treatment choice

Establish goals of therapy

Differences between chemotherapy and novel agents

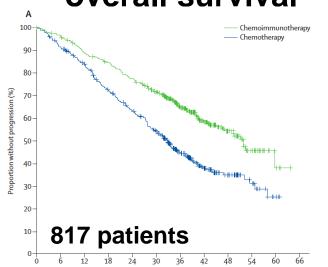
Chemotherapy

 Damages/binds DNA, triggers cell death

Novel Agents

- Trigger cell death via a different mechanism
 - Anti-CD20 antibodies
 - BTK inhibitors
 - PI3Kdelta inhibitors
 - BCL2 inhibitors

Novel therapies approved by Health Canada


Therapy	Class of Agent	Indication(s)
Bendamustine	Antineoplastic alkylating	Previously untreated CLL
(TREANDA)	agent	
Obinutuzumab	Monoclonal type II anti-	Previously untreated CLL (in combination
(GAZYVA)	CD20 antibody	with chlorambucil)
Ibrutinib	Bruton's Tyrosine Kinase	Relapsed CLL; previously untreated CLL with
(IMBRUVICA)	(BTK) inhibitor	17p deletion or for whom FCR is
		inappropriate
Idelalisib	Phosphoinositide 3	Relapsed CLL
(ZYDELIG)	kinase-delta (PI3K-δ)	
	inhibitor	
Venetoclax	BH3 mimetic (BCL2	Relapsed CLL with 17p deletion or for whom
(VENCLEXTA)	antagonist)	there are no other available treatment
		options

FIT and < 65 years old : FCR fludarabine, cyclophosphamide and rituximab

CLL8 trial
FCR significantly better than
FR for progression-free and
overall survival

<u>Definition of FIT</u>= Physically active, no health problems and normal renal function but only ~25% of CLL patients meet these criteria

Efficacy of FCR:

Complete remission: 45%

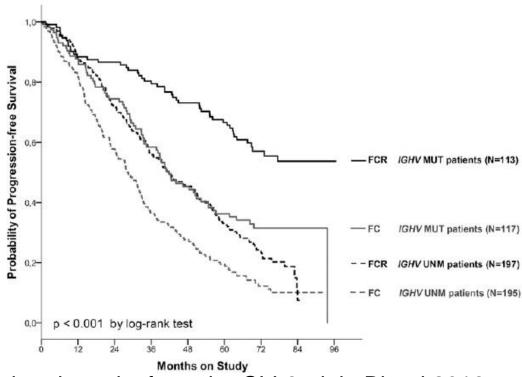
Remission duration: 4-5 years

Toxicity of FCR:

60-80% get at least one grade 3-4 toxicity

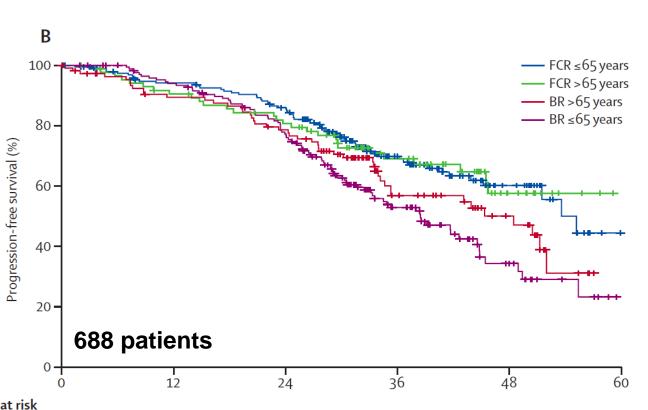
Short term: neutropenia, infections (25%)

Treatment related mortality (2-5%)


20% don't finish all 6 courses

Long term toxicity: 15% (5% MDS/AML)

Long-term survival with FCR: If IGVH is mutated, ~60% still in remission after 8 years



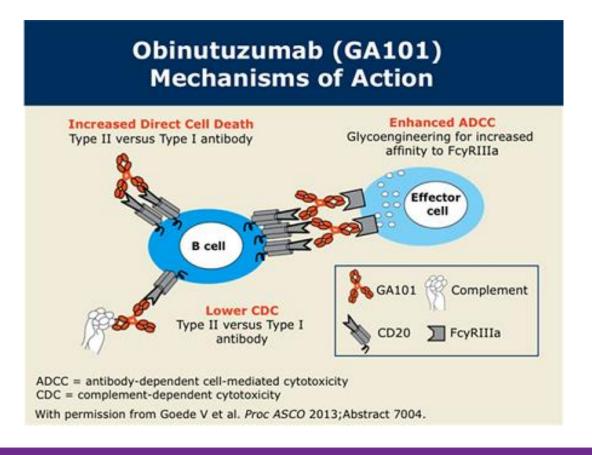
Fisher et al. Updated results from the CLL8 trial. Blood 2016

FIT and > 65 years old or UNFIT: bendamustine and rituximab (BR)

Definition of UNFIT:

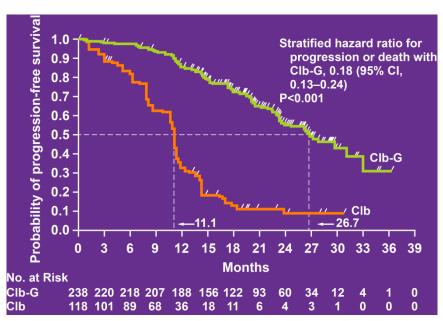
Age > 70 or younger patients with co-morbidities

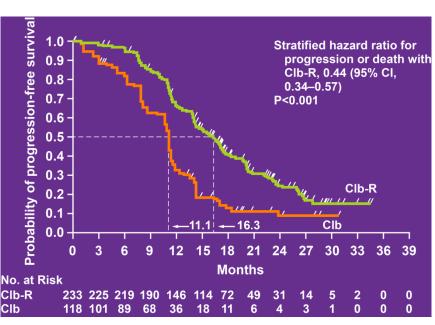
CLL10 trial


FCR is better than BR except in > 65 year old where BR is as effective but less toxic than FCR

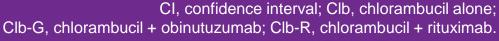
Hallek M, et al. *Lancet*. 2010;376(9747):1164-1174.

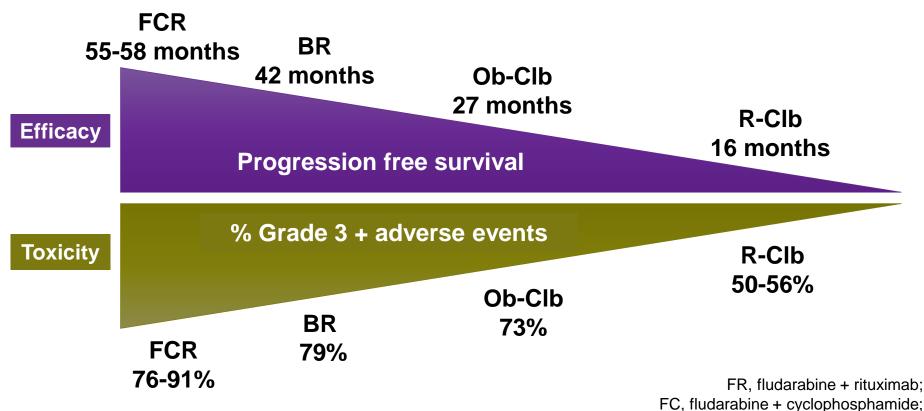
Obinutuzumab: novel anti-CD20 with increased direct cell death





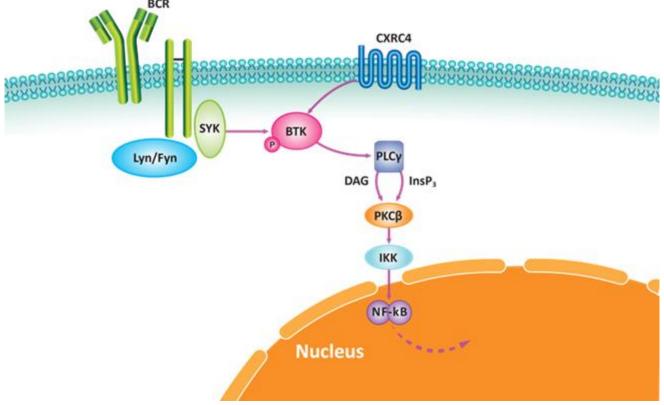
FIT and > 65 years old or UNFIT: chlorambucil and obinotuzumab


CLL 11 trial: Obinutuzumab + Chlorambucil or Rituximab + Chlorambucil vs Chlorambucil Alone


Goede V, et al. *N Engl J Med*. 2014;370(12):1101-1110.

The Balance Between Efficacy and Safety in Front Line CLL

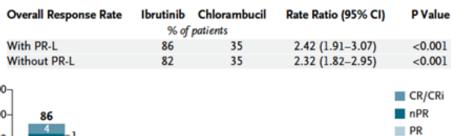
Owen C, et al. Clin Lymphoma Myeloma Leuk. 2015;15(6):303-313.

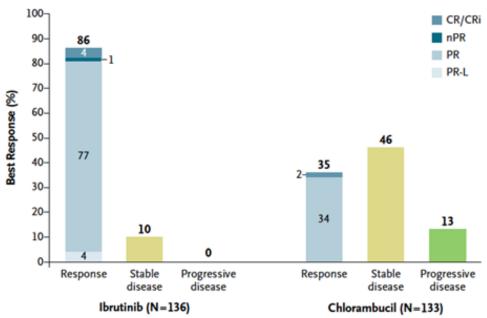


Ob-Clb, obinutuzumab + chlorambucil;

R-Clb, rituximab + chlorambucil.

Ibrutinib: inhibits BTK (Bruton's tyrosine kinase)

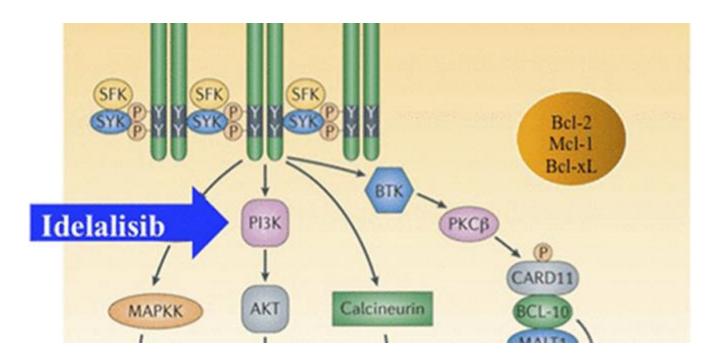



Ibrutinib

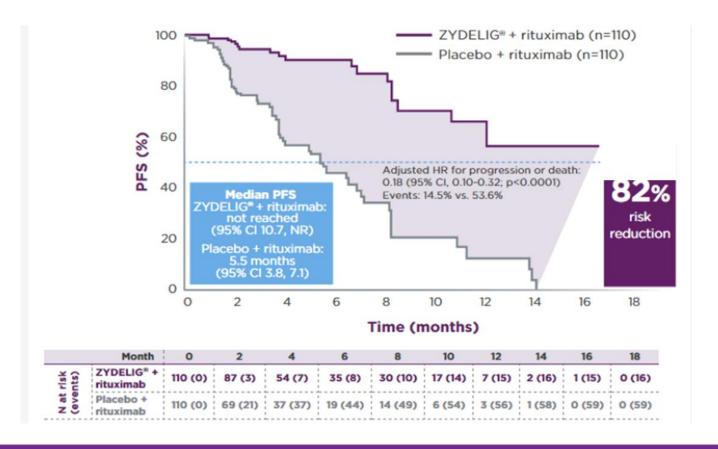
Overall response of 71% but only ~5% achieve a complete response

Potential side effects:

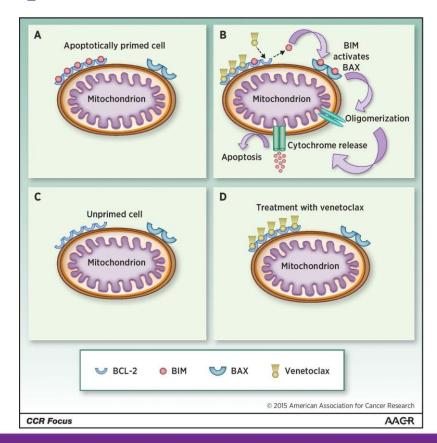
- Cardiac arrythmias/atrial fibrillation
- Bleeding


Treatment options for relapsed CLL

- If relapse occurs > 3 years after FCR or FR, could repeat immuno-chemotherapy
- More often, we would use the newer therapie (taken orally, continuous daily therapy, expensive)
 - >BCR inhibitors (ibrutinib and idelalisib)
 - ➤ BCL2 Inhibitor (venetoclax)
 - Clinical trial with other novel agents
- Cellular therapies: CAR-T (trial), allogeneic transplant

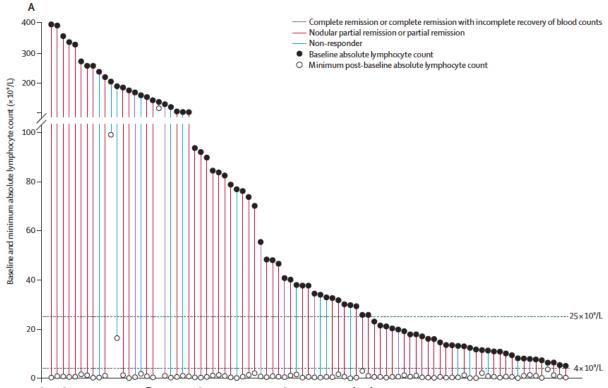

Idelalisib targets PI3Kδ in CLL (and normal B & T cells)

Idelalisib & Rituximab



At 24 weeks, disease progression occurred in 12 patients (10.9%) with Zydelig + rituximab vs 53 patients (48.2%) with placebo¹

Venetoclax kills CLL cells that are "primed" to die



Concept by Antony Letai

Venetoclax induces rapid clearance of peripheral blood lymphocytes

Stilgenbauer et al. Lancet Oncol. 2016 Jun;17(6):768-78

Allogeneic Transplantation CLL

Table 1. Summary of Transplant Characteristics and Survival in the Largest Reported Prospective Studies of RIC HSCT in CLL

	Fred Hutchinson Cancer Center ⁸	German CLL Study Group ^{10,48}	MD Anderson Cancer Center ⁹	Dana-Farber Cancer Institute ¹¹
Number of patients	82	90	86	76
Conditioning regimen	Flu/low-dose TBI	Flu/Cy ± ATG	Flu/Cy ± R	Flu/Bu
Donors, % sibling/% MUR	63/37	41/59	50/50	37/63
Median follow-up, months	60	72	37	61
Median PFS, %	39 (at 5 y)	38 (at 6 y)	36 (at 6 y)	43 (at 6 y)
Median OS, %	50 (at 5 y)	58 (at 6 y)	51 (at 6 y)	63 (at 6 y)

ATG, antithymocyte globulin; Bu, busulfan; CLL, chronic lymphocytic leukemia; Cy, cyclophosphamide; Flu, fludarabine; HSCT, hematopoietic stem cell transplantation; MUR, matched unrelated donor; OS, overall survival; PFS, progression-free survival; R, rituximab; RIC, reduced-intensity conditioning; TBI, total body irradiation; y, years.

Fabienne McClanahan, Clinical Advances in Hematology & Oncology Volume 13, Issue 9 September 2015

Supportive Care

- Promote well-being
- Vaccination
 - Annual flu shot, pneumonia vaccine
 - Vaccine record
- Majority of patients with CLL will experience serious infections. Keep track of your infections & how long they last.
- Some patients benefit from antibody injections (immunoglobulin IV or under the skin=Hyzentra)

Questions?

