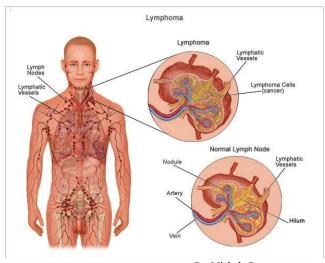


LYMPHOMA | LYMPHOME CANADA | CANADA

Dr. Martina Trinkaus, MD FRCPC Associate Professor, University of Toronto St. Michael's Hospital, Unity Health Network

Disclosures

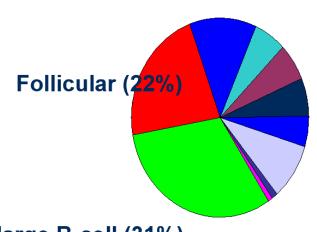
• Ad Boards: Janssen, AbbVie, Amgen, Celgene


Objectives

- To briefly review the current standard of care in:
 - Chronic Lymphocytic Leukemia
 - Indolent Non-Hodgkin's Lymphoma
 - Diffuse Large B cell Lymphoma
- To highlight ASH 2020 updates
- To appreciate future changes in clinical practice

What is Lymphoma?

- Cancers that develop from the immune system
 - Lymphoid tissue, spleen, bone marrow
 - Cells that make Immunoglobulins
- Can exist in the "Leukemic Phase"
 - Chronic Lymphocytic Leukemia


Dr. Michele Berman

Frequency of NHL Subtypes in Adults

Composite lymphomas (12%)

Diffuse large B-cell (31%)

N = 9000 cases / year in Canada 2000 cases / year CLL in Canada **Small lymphocytic (6%)**

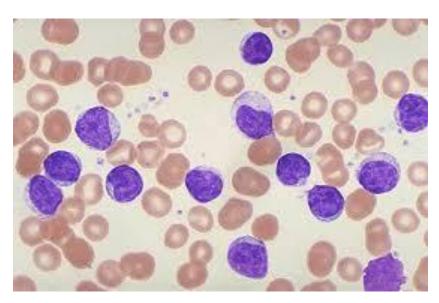
Mantle cell (6%)

Peripheral T-cell (6%)

Marginal zone ,MALT (5%)

Other subtypes with a frequency <2% (9%)

Marginal zone B-cell, nodal (1%)


Lymphoplasmacytic (1%)

Armitage et al. J Clin Oncol 1998

Chronic Lymphocytic Leukemia

- Average age 72
- Age-adjusted incidence rates are
 7.5 to 12 per 100,000 person-years
- B cell lymphocytosis > 5 x 10 9/L
- Flow Cytometry: CD5+, 19+, 23+, dim CD20

The international Prognostic Index for patients with CLL (CLL-IPI): An international meta-analysis Kutsch N et al. Lancet Oncol 2016

Summary: The CLL-IPI

Variable	Adverse factor	Grading
TP53 (17p)	deleted and/or mutated	4
IGHV status	unmutated	2
B2M, mg/L	> 3.5	2
Clinical stage	Binet B/C <u>or</u> Rai I-IV	1
Age	> 65 years	1
Prognostic Scor	0 - 10	

Risk Group	Score
Low	0 – 1
Intermediate	2-3
High	4-6
Very High	7 - 10

SLIDES ARE THE PROPERTY OF THE AUTHOR. PERMISSION REQUIRED FOR REUSE.

N= 3472, 8 Clinical Trials

Lancet Oncol. 2016;S1470-2045:30029-8

CLL-IPI Prognostic Scoring OS Untreated Patients

Risk Category	CLL-IPI Risk Score	5 yr OS	10 yr OS	Hazard Ratio (95% CI)
Low	0-1	93.2%	79%	-
Intermediate	2-3	79.3	39.2	3.5 (2.5-4.8)
High	4-6	63.3	21.9	1.9 (1.5-2.3)
Very High	7-10	23.3	3.5	3.6 (2.6-4.8)

Prospective Validation underway - ? Impact on older patients, targetted therapy

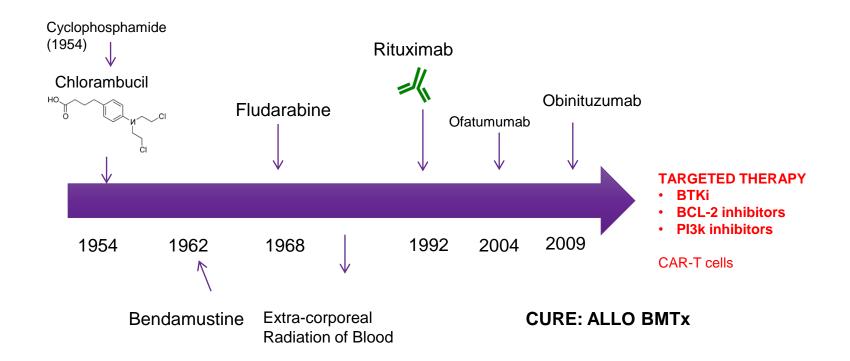
Considerations for Treatment:

- 3 to 27% with 17p del
- 50% unmutated IgHV status

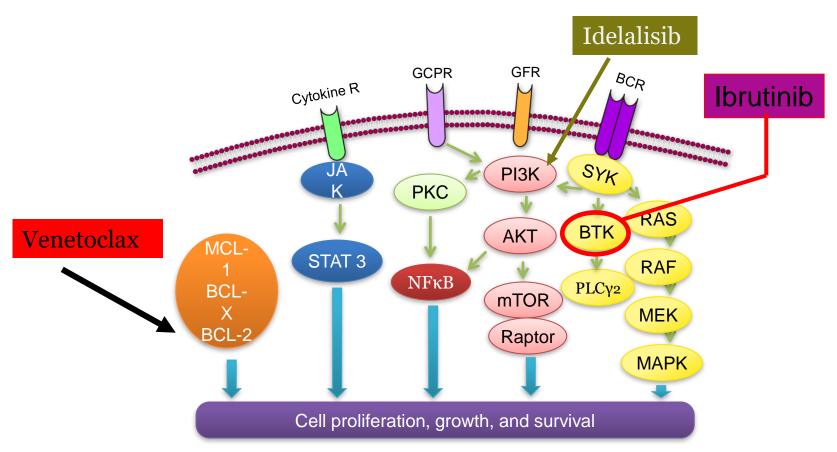
Lancet Oncol. 2016;S1470-2045:30029-8 Dr. Graeme Fraser, CHC Sept 2016

CLL General Considerations Indications for Cytotoxic Treatment

- Evidence of progressive marrow failure
- Massive, progressive, or symptomatic splenomegaly
- Massive nodes or progressive/symptomatic lymphadenopathy
- Progressive lymphocytosis
 - >50% over a 2-month period
 - Lymphocyte doubling time <6 months*
- Autoimmune anemia and/or thrombocytopenia poorly responsive to standard therapy
- ≥1 of the following disease-related symptoms
 - Unintentional weight loss
 - Significant fatigue
 - Fevers
 - Night sweats


Hallek M, Cheson BD, et al. Blood. 2008;111:5446-5456.

*If initial lymphocytes < 30x10⁹/L, lymphocyte doubling time should not be used as a single parameter to define a treatment indication. Factors contributing to lymphocytosis or lymphadenopathy other than CLL should be excluded


The Evolution of CLL Therapy

Targeted Agents in CLL

Ibrutinib forms a specific and irreversible bond with cystein-481 in BTK and prevents mantel cell migration and adhesion.

Adapted from: Reeder CB, Ansell SM. Blood. 2011;117(5):1453-1462.

CLL: Evolution of Chemotherapy Regimens pre 2016

Chemotherapeutic Approach	Typical example	OR (%)	CR (%)	Remission duration	
Alkylating agent	Chlorambucil	40–60	<10	~1 year	C+O, TTNT
	C + Obinotuzumab ¹	>78%	20.7%	27 mos	\rfloor 48 mos
Purine analogue	Fludarabine	60-80	10-20	1.5 - 2 years	
Purine analogue and alkylating agent	Fludarabine, Cyclophosphamide (FC)	80-95	20-40	3 - 4 Years	
	Fludarabine, Cyclophosphamide, Rituximab (R-FC) ²	90	44	Median PFS 52 months	Age < 65 IgHV mut Not 17pdel
Purine analogue- alkylator hybrid	Bendamustine, Rituximab³	90	36	Median PFS 44 months	

CR, complete response; OR, overall response.

^{1.} N Engl J Med. 2014 Mar 20;370(12):1101-10

^{2.} Crump M, et al. New Evidence in Oncology. February 2009.

^{3.} Hallek M, et al. Lancet 2010; 376(9747):1164-1174.

^{4.} Eichorst et al. Blood 2013; abstract 526

Randomized studies using targeted agents ibrutinib, idelalisib or venetoclax, alone or in combination, as first or second line therapy

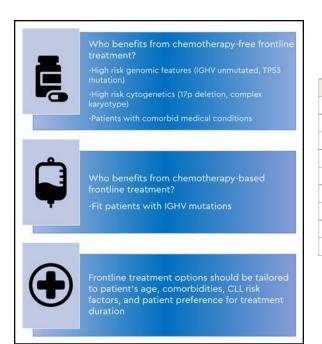
Treatment	N	Agea	ORR	CR %	PR %	uMRD %	PFS ^b	2y-PFS	2y-OS	Reference
Randomized studies in first lir	ne treat	ment								
Ibrutinib	136	73	86%	4%	82	NA	NR	89%	98%	Burger et al. 2015 ¹⁰⁷
Chlorambucil (CLB)	133	72	35%	2%	22	NA	18.9	34%	85%	
Ibrutinib + rituximab	354	58	NA	NA	NA	NA	NA	3 years: 89%	NA	Shanafelt et al. 2018 ¹⁰⁸
FCR	175	57	NA	NA	NA	NA	NA	3 years: 73%	NA	
Ibrutinib	182	71	93%	7%	NA	1%	NR	87%	90%	Woyach et al. 2018 ¹⁰⁹
Ibrutinib + rituximab	182	71	94%	12%	NA	4%	NR	88%	94%	
BR	183	70	81%	26%	NA	8%	41.0	74%	95%	
Ibrutinib + obinutuzumab	113	70	88%	19%	69%	35%	NR	30 m: 79%	30 m-OS: 86%	Moreno et al. 2019 ¹¹⁰
CLB + obinutuzumab	116	72	73%	8%	66%	25%	19.0	30 m: 31%	30 m-OS: 85%	
Venetoclax + obinutuzumab	216	72	85%	50%	35%	76%	NR	88%	92%	Fischer et al 2019 111
CLB + obinutuzumab	216	71	71%	23%	48%	35%	NR	64%	93%	
Randomized studies in treatm	ent of	relapsed	l/refract	ory CLL						
BR + ibrutinib	289	64	83%	10%	72%	26%	NR	18 m: 79%	3y-OS: 82%	Chanan-Khan et al. 112,113
BR	289	63	68%	3%	65%	6%	13.3	18 m: 24%	3y-OS: 73%	
Venetoclax + rituximab	194	65	92%	8%	84%	62%	NR	85%	92%	Seymour et al. 2018 ¹¹⁴
BR	195	65	72%	4%	69%	13%	17.0	63%	87%	
Idelalisib + rituximab	110	71	81%	0	81%	NA	NR	6 m: 93%	1y-OS: 92%	Furman et al. 2014 ¹¹⁵
Rituximab	110	71	13%	0	13%	NA	5.5	6 m: 46%	1y-OS: 80%	
BR + idelalisib	207	62	70%	1%	69%	NA	20.8	NA	NA	Zelenetz et al. 2017 ¹¹⁶
BR	209	64	45%	0	44%	NA	11.1	NA	NA	

ELEVATE TN: Acala + G vs A vs ChlO PFS at 24 months: 93%vs 87% vs 47%

AJH. Nov 2019: 1266-1287

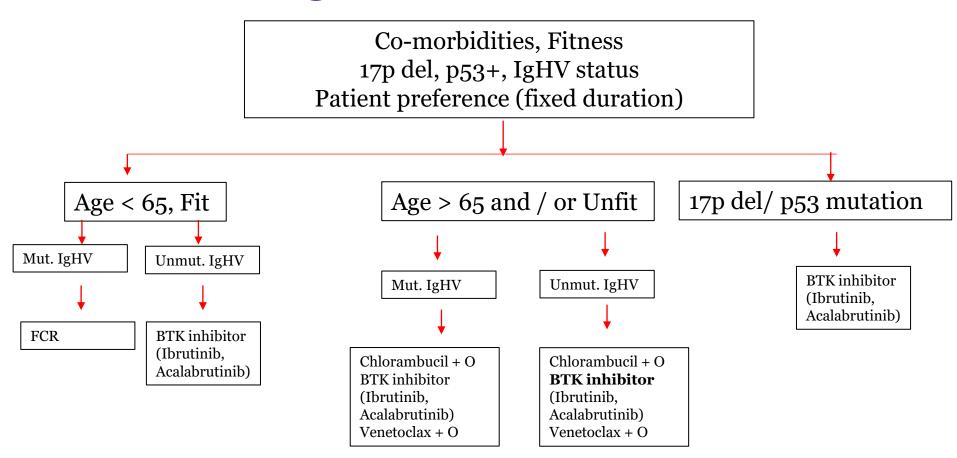
42% discontinuation rate at 5 years (mostly

Favors IR for unmut


No role to adding Ritux to Ibrutinib single agent

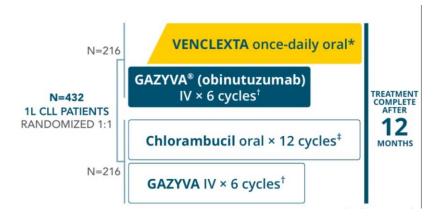
d/t AEs

Chemotherapy-free frontline therapy for CLL: is it worth it?

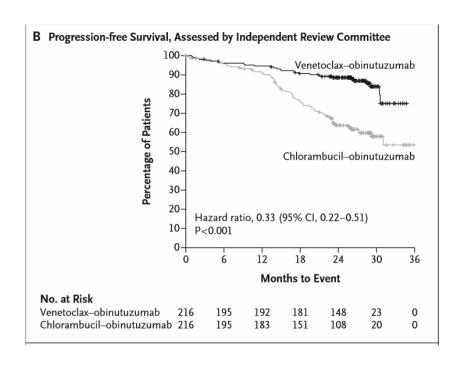

BTKi clinical trial	Arthralgias, %	Atrial fibrillation, %	Bleeding/hemorrhage, %	Hypertension, %	Infection, %
RESONATE-2: ibrutinib ³⁴ (N = 136)	26	16	11	26	12*
A041202					
Ibrutinib ³⁵ (n = 180)	1	17	2*	29*	20*
Ibruitnib-rituximab ³⁵ (n = 181)	2	14	4*	34*	20*
iLLUMINATE: Ibrutinib-Obintuzumab ³⁶ (N = 113)	22	12	NR	17	14*
ECOG E1912: Ibrutinib-rituximab ⁷ (N = 352)	4.8*	7.4	NR	18.8*	9.4+
ELEVATE-TN					
Acalabrutinib ⁴⁰ (n = 179)	11.2	3.9	1.7‡	4.5	14 ⁺
Acalabrutinib-obinutuzumab40 (n = 179)	9.5	3.4	2.2*	7.3	20.8†

Joanna M. Rhodes, Jacqueline C. Barrientos, Chemotherapy-free frontline therapy for CLL: is it worth it?, Hematology Am Soc Hematol Educ Program, 2020,

A basic algorithm for 1L CLL Tx



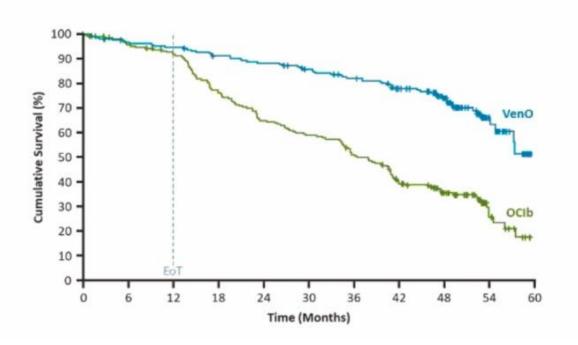
ORIGINAL ARTICLE


Venetoclax and Obinutuzumab in Patients with CLL and Coexisting Conditions

K. Fischer, O. Al-Sawaf, J. Bahlo, A.-M. Fink, M. Tandon, M. Dixon, S. Robrecht,
S. Warburton, K. Humphrey, O. Samoylova, A.M. Liberati, J. Pinilla-Ibarz, S. Opat,
L. Sivcheva, K. Le Dû, L.M. Fogliatto, C.U. Niemann, R. Weinkove, S. Robinson,
T.J. Kipps, S. Boettcher, E. Tausch, R. Humerickhouse, B. Eichhorst,
C.-M. Wendtner, A.W. Langerak, K.-A. Kreuzer, M. Ritgen, V. Goede,
S. Stilgenbauer, M. Mobasher, and M. Hallek

CLL14: First upfront Venetoclax Trial

- CIRS score > 6
- 36 month PFS: 82% vs 50%

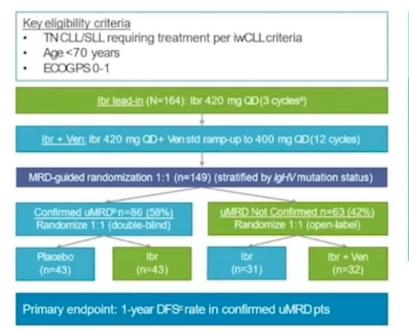


Abstract #127: Clonal Dynamics after Venetoclax-Obinutuzumab Therapy: Novel Insights from the Randomized, Phase 3 CLL14 Trial

Take Home points - Minimal Residual Disease:

- 1. High uMRD levels are achieved with VO
 - Two months after treatment completion (follow-up month 3), 40% (7%) of patients in the Ven-Obi arm (Clb-Obi arm) had uMRD levels $<10^{-6}$, 26% (13%) $\ge 10^{-6}$ and $<10^{-5}$
 - Patients in the Ven-Obi arm with MRD levels ≤10⁻⁵ had a 2-year PFS after EoT of approximately (approx.) 93%, while patients with detectable MRD >10⁻² had a 2-year PFS of approx. 37%
- 2. Must continue the full 12 cycles of VO treatment
 - In 25% of the Ven-Obi treated patients, MRD response deepened after continuing with 6 cycles of venetoclax monotherapy

Abstract #127: Clonal Dynamics after Venetoclax-Obinutuzumab Therapy: Novel Insights from the Randomized, Phase 3 CLL14 Trial Othman Al-Sawaf et al.

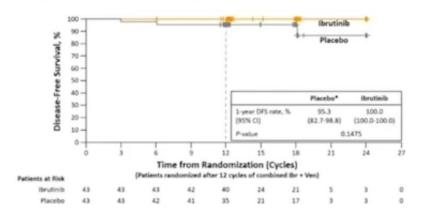

- · Median observation time 52.4 months
- . All patients off treatment for ≥3 years

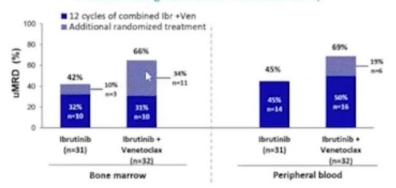
	VenO (n=216)	OCIb (n=216)
HR (95% CI)	0.33 (0.	25-0.45)
48-month PFS estimate, %	74.0	35.4
Median PFS, months (95% CI)	NR	36.4

Abstract #123: Ibrutinib Plus Venetoclax for First-Line Treatment of CLL/ SLL: 1 yr DFS Results from the MRD Cohort of the Phase 2 CAPTIVATE study Weirda et al.

Patient Characteristics in MRD Cohort		Confirme (n=	ed uMRD 86)	uMRD Not Confirmed (n=63)		
		Placebo (n=43)	lbr (n=43)	lbr (n=31)	Ibr + Ven (n=32)	
Median ag	e (range), years	61 (43-69)	56 (34-69)	58 (28-69)	56 (37-69)	
Rai stage I	II/IV disease, n (%)	15 (35)	8 (19)	14 (45)	11 (34)	
	del(17p)/TP53 mut	2 (5)	13 (30)	5 (16)	8 (25)	
High-risk Features,	del(11q)d	8 (19)	10 (23)	3 (10)	2 (6)	
n (%)	Complex karyotype ^e	4(9)	13 (30)	5 (16)	4 (13)	
	Unmutated IgHV	30 (70)	30 (70)	14 (45)	15 (47)	
Any cytope	enia, n (%)	19 (44)	6 (14)	13 (42)	14 (44)	
LN diamet	er ≥5 cm , n (%)	18 (42)	10 (23)	7 (23)	11 (34)	
Median ALCx 109/L (range)		53 (1-235)	56 (2-256)	85 (1-342)	87 (3-419)	
ALC	≥25 x 109/L, n(%)	32 (74)	34 (79)	25 (81)	24 (75)	

*28-day cycles. *LMRD defined as having uMRD4 serially over at least 3 cycles, and uMRD in both PB and BM. *DFS rate: proportion of


WHU, Mato 2021



Phase 2 CAPTIVATE Study of Ibrutinib + Venetoclax for 1L Treatment of CLL/SLL: Efficacy in the MRD Cohort

1-year DFSAfter Randomization in Pts With Confirmed uMRD

Best Overall uMRD Rates in uMRD Not Confirmed Pts (in pts without confirmed uMRD after 12 cycles of lbr+Ven, increases in uMRD were great with lbr+Ven vs lbr alone)

	All Patients	Confirm	ed uMRD	uMRD Not	Confirmed
	(N=164)	Placebo (n=43)	Ibr (n=43)	lbr (n=31)	lbr + Ven (n=32)
30-month PFS, %(95% CI)	95.3 (90.4-98.8)	95.3 (82.7-98.8)	100.0 (100.0-100.0)	95.2 (70.7-99.3)	96.7 (78.6-99.5)

*3 DFS events in placebo arm of DFS were PD in 2 pts and MRD relapse in 1 pt. Median follow-up on study: 31.3 months. Median follow-up post-randomization: 16.6 months. Wierda WG, et al. ASH2020. Abstract 123.

WHU, Mato 2021

Abstract #1306: Efficacy and safety of Zanubrutinib in Patients with Treatment-Naïve CLL/SLL with del 17p: Follow-up results from Arm C of the SEQUOIA Trial Brown et al.

Key eligibility criteria

- Age ≥65 years or unsuitable for treatment with FCR
- Verification of del(17p) by FISH with >7% aberrant nucleia
- TNwith treatment required per iwCLL criteria
- · Anticoagulants and CYP3A inhibitors allowed

Cohort 2 with del(17p)(n~100)

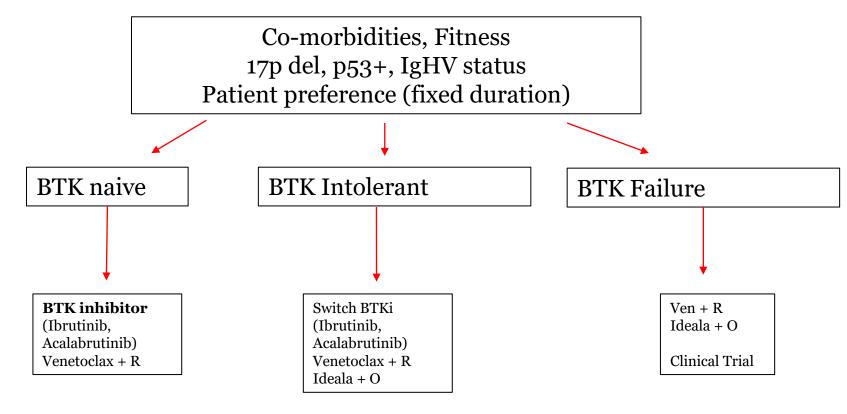
Arm C(n=109)

 Nonrandomized; zanubrutinib 160 mg BID until PD, intolerable toxicity, or end of study

Primary endpoint: PFS (IRC) Secondary endpoints: ORR (IRC and INV), DOR, safety

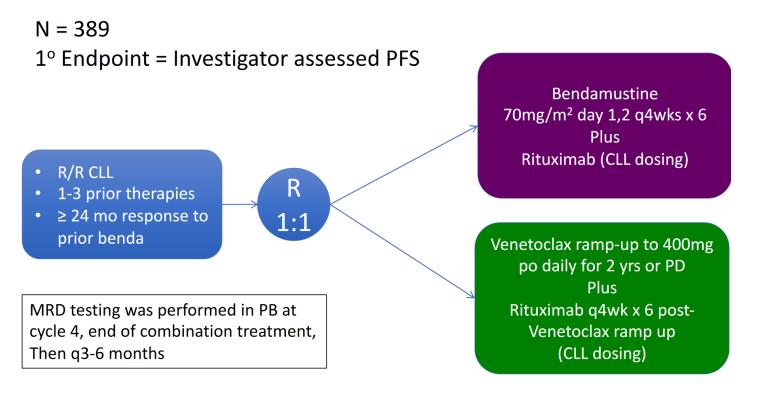
Patient Characteris	stics		(N=109)	
Median age (range	70.0 (42-86)			
E00GPS2, n(%)	14 (12.8)			
Median time since	21.62 (7.69-54.77)			
SLL, n (%)			10 (9.2)	
Binet stage Cfor Cl	40/99 (40.4)			
del(13q), n (%)	72 (66.1)			
del(11q), n (%)			37 (33.9)	
IgHVunmutated, n.	/N (%)		69/104 (66.3)	
Bulky disease,	Any target lesion	LDi≥5 cm	42 (38.5)	
n (%)	Any target lesion	LDi≥10 cm	11 (10.1)	
	Non-complex (0-	Non-complex (0-2 abnormalities)		
Karyotype, ^b n (%)	Complex (abnormalities)	3 or more	32/86 (37.2)	
		5 or more	23/86 (26.7)	

Table 2: Summary of Efficacy (Best Response)


ruble 2. Summary of Emedey (Best Response)				
	TN del(17p) CLL/SLL			
	(n = 90) ^a			
Median follow-up, mo (range)	7.0 (2.9-14.5)			
Efficacy (best response)				
ORR (CR, PR, or PR-L), n (%) [95% CI] ^b	83 (92.2) [84.6-96.8]			
CR	0 (0.0)			
PR	68 (75.6)			
PR-L	15 (16.7)			
SD	6 (6.7)			
PD	1 (1.1)			

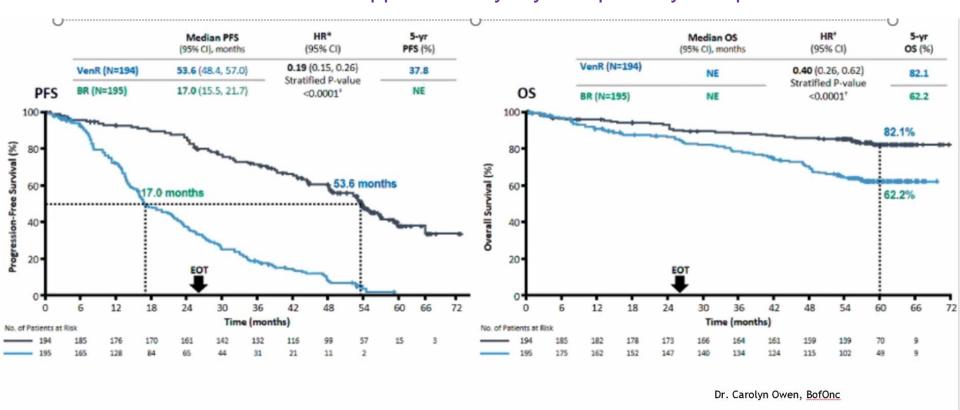
WHU, Mato 2021

A basic algorithm for 2L CLL Tx



There is no data to support which is better in BTK naïve patient... Await CLL17

Abstract #125: Five-Year Analysis of Murano Study Demonstrates Enduring Undetectable Minimal Residual Disease (uMRD) in a Subset of Relapsed/Refractory Chronic Lymphocytic Leukemia (R/R CLL) Patients (Pts) Following Fixed-Duration Venetoclax-Rituximab (VenR) Therapy (Tx) Kater A et al.


Pts were categorized by MRD status as previously reported, using <10⁻⁴ threshold for uMRD

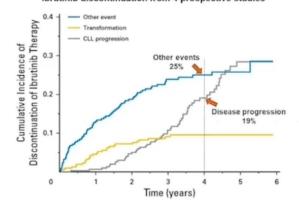
MURANO Trial Update: How does VR compare in RR CLL population?

* Median time to next tx is approximately 5 years post 2 years post fixed VR

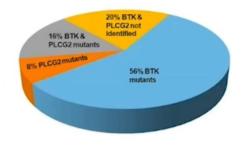
Abstract #125: Five-Year Analysis of Murano Study Demonstrates Enduring Undetectable Minimal Residual Disease (uMRD) in a Subset of Relapsed/Refractory Chronic Lymphocytic Leukemia (R/R CLL) Patients (Pts) Following Fixed-Duration Venetoclax-Rituximab (VenR) Therapy (Tx) Kater A et al.

Take Home Points:


- Median PFS was 53.6 (95% CI: 48.4-57.0) mos for VenR and 17.0 (95% CI: 15.5-21.7) mos for BR
 - 5-yr OS estimates of 82.1% (95% CI: 76.4-87.8) for VenR and 62.2% (95% CI: 54.8-69.6) for BR
- MRD conversion was 19 24 months before CLL progression



What's the future?: Loxo305 is a novel non-covalent BTKi (overcome the resistance of binding to the BTK)

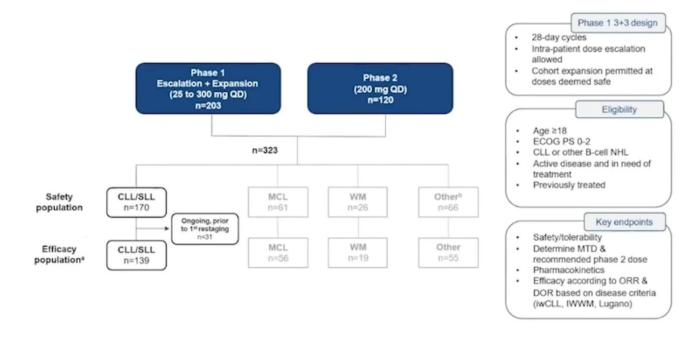

Resistance and Intolerance Limit Covalent BTK Inhibitor Outcomes

- Ibrutinib discontinuation rates at 5 years
 - Front line = 41%³
 - Relapsed/refractory = 54%1

Ibrutinib acquired resistance in patients with progressive CLL²

- BTK C481 mutations are the dominant reason for progressive CLL after covalent BTK inhibitors¹⁻⁸
- BTK C481 mutations prevent covalent BTK inhibitors from effective target inhibition¹⁻⁶

Woyach et al. J Clin Oncol. 2017;35:1437-43. *Lampson et al. Expert Rev Hematol. 2018;11:185-94. *Burger et al. Leukemia. 2020;34:878-789. *Byrd et al. N Engl J Med. 2016;374:323-32. *Hershkovitz-Rokah et al. Br J Haematol. 2018;181:308-19. *Woyach et al. N Engl J Med. 2014;370:2288-94. *Woyach et al. Blood. 2019;134(Suppl 1):504. *Wu et al. Blood. 2017;129:2519-25.



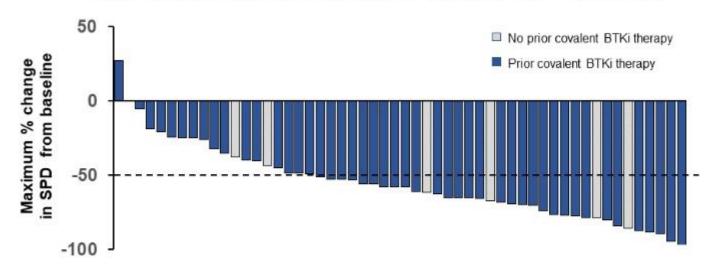
Abstract #542: LOXO-305, A Next Generation, Highly Selective, Non-Covalent BTK Inhibitor in Previously Treated CLL/ SLL: Results from the Phase I/II Bruin Study

Mato A et al.

Loxo-305 is a selective, non-covalent BTKi able to inhibit wild type BTK and the C481 BTK mutant equally in vitro

Phase 1/2 BRUIN Study: Design, Eligibility and Enrollment

Data cutoff date of 27 September 2020. "Efficacy evaluable patients are those who had at least one post-baseline response assessment or had discontinued treatment prior to first post-baseline response assessment.
Other includes DLBCL, FL, MZL, Richter's transformation, B-PLL, Hairy Cell Leukemia, and other transformation. All response data presented based on investigator assessment.



Abstract #542: LOXO-305, A Next Generation, Highly Selective, Non-Covalent BTK Inhibitor in Previously Treated CLL/ SLL: Results from the Phase I/II Bruin Study

Mato A et al.

Figure: Waterfall plot of the maximum % change in SPD from baseline*

^{* 11} efficacy-evaluable pts are not included in the waterfall plot, including 1 pt who discontinued prior to first response assessment, and 10 pts (4 pts with PR/PR-L and 6 pts with SD) with incomplete tumor lesion measurement data at the time of data cut

Abstract #542: LOXO-305, A Next Generation, Highly Selective, Non-Covalent BTK Inhibitor in Previously Treated CLL/ SLL: Results from the Phase I/II Bruin Study

Mato A et al.

LOXO-305 Safety Profile

		All do	ses and pat	tients (n=32	23)	ļi .			
		Treatment-e	mergent AEs, (≥	:10%), n (%)*		Treatment-rela	Treatment-related AEs, n (%)		
Adverse Event	Grade 1	Grade 2	Grade 3	Grade 4	Any Grade	Grades 3/4	Any Grade		
Fatigue	40 (12%)	22 (7%)	3 (1%)	-	65 (20%)	2 (<1%)	27 (8%)		
Diarrhea	45 (14%)	10 (3%)		-	55 (17%)	-	28 (9%)		
Contusion	37 (12%)	5 (2%)			42 (13%)	-	29 (9%)		
AEs of special interest ^{b,c}									
Bruising	48 (15%)	5 (2%)	-	-	53 (16%)	H	37 (12%)		
Rash	30 (9%)	5 (2%)		-	35 (11%)	-	18 (6%)		
Arthralgia	13 (4%)	3 (1%)	-		16 (5%)	-	5 (2%)		
Hemorrhage	10 (3%)	4 (1%)	1 (<1%)d	-	15 (5%)	-	5 (2%)		
Hypertension	2 (<1%)	9 (3%)	4 (1%)		15 (5%)	-	4 (1%)		
Atrial fibrillation/flutter		2 (<1%)0	-	-	2 (<1%)		-		

No DLTs reported and MTD not reached 5 of 323 patients (1.5%) discontinued due to treatment-related AEs 200mg QD selected as recommended Phase 2 dose

Data cutoff date of 27 September 2020. Total % may be different than the sum of the individual components due to rounding. *The AEs listed are the most common that occurred at any grade in at least 10% of the patients, regardless of attribution. *AEs of special interest are those that were previously associated with covalent BTK inhibitors. *Bruising includes contusion, petechia, ecchymosis and increased tendency to bruise. Hemorrhage includes hematoma, epistaxis, rectal hemorrhage, subarachnoid hemorrhage, upper gastrointestinal hemorrhage, vitreous hemorrhage and wound hemorrhage. Rash includes rash macule-papular, rash, rash entherations, rash popular, rash pruritic and rash pustular. *Subarachnoid bleed sustained during a bicycle accident, considered by investigator as unrelated to LOXO-305. *Both events considered by investigator as unrelated to LOXO-305. *Both events considered by

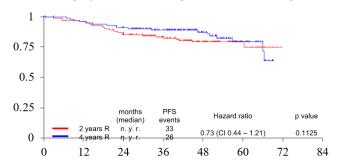
Future Questions in CLL...

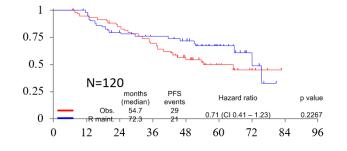
- Head to head trial of Ibrutinib vs Acalabrutinib in 1L CLL currently accruing
 - Retrospective data for RR CLL show that acalabrutinib treatment are superimposable on Resonate 2 curves (lb vs Ofatumumab)
 - Considerations of AEs and QoL in treatment choice
- Which drugs may overcome BTKi resistance (Loxo 305)
- How to use MRD testing in CLL patients?
 - MRD + conversion precludes clinical symptoms by 25 months
 - 17p del or complex cytogenetics patients progress faster
- It is still unclear if Unmut IgHV patients need targeted agents vs CIT
- New combination therapies with time limited exposures

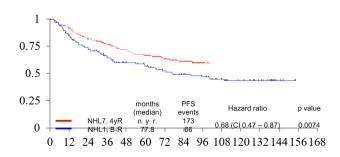
Indolent NHL

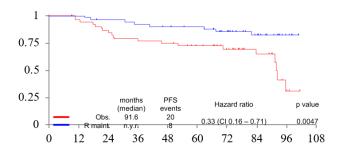
First Line Treatment: Follicular Lymphoma

Regiment	Progression Free Survival	Toxicities
StiL Trial: Bendamustine + Rituximab R-CHOP *No maintenance	69.5 months (HR 0.58) 31.2 months	Myelotoxicity, skin reaction Neuropathy, Allopecia
PRIMA: R-FCM + R R-CHOP + R R-CVP + R	3-year PFS 74 % with maintenance rituximab (HR 0.55) vs 58% *73 months f/u: 6-year PFS was 42.7% in the observation arm vs 59.2% in the rituximab maintenance arm	Infusion reactions (24%) Infection (39%)
Gallium Trial: O+Chemo + Maintenance R+Chemo + Maintenance	3-year PFS was 81.9% (95%CI: 77.9-85.2%) vs. 77.9% (95%CI: 73.8-81.4%), respectively, HR: 0.71 *Short median f/u of 34.5 months	Grade ≥3 infusion reactions: obinutuzumab 74.6% vs rituximab 67.8%
Relevance Trial: Revlimid + Ritux + Maintenance R+Chemo + Maintenance	3 year PFS: 77% vs 78%	Grade ¾ neutropenia: 34% vs 50%



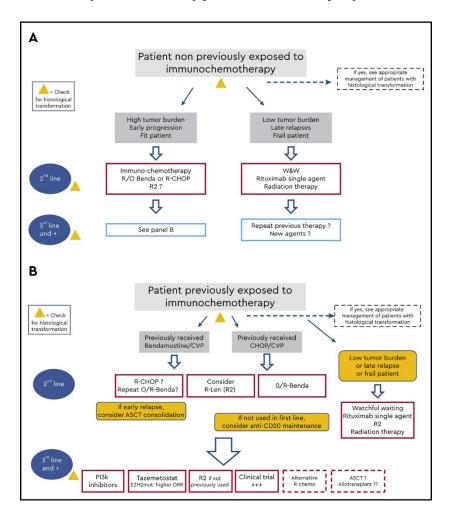

StiL NHL 7-2008 MAINTAIN trial: previous results


Follicular Lymphoma: B-R + 2 years R vs. B-R + 4 years R


Mantel Cell Lymyphoma: B-R vs. B-R + 2 years R

Follicular Lymphoma: B-R (NHL1) vs B-R + R (NHL7)

Marginal Zone Lymyphoma: B-R vs. B-R + 2 years R



ASH 2019: Waldenstrom's Macroglobulinemia: Ritux maintenance of no benefit

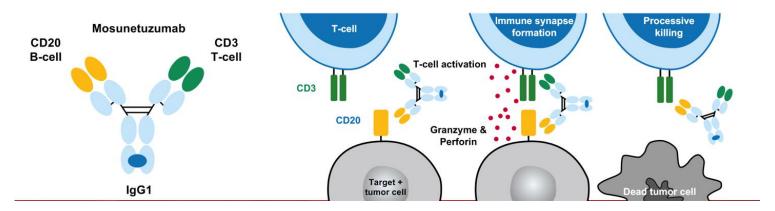
How do I sequence therapy for follicular lymphoma?

Gilles Salles, How do I sequence therapy for follicular lymphoma?, Hematology Am Soc Hematol Educ Program, 2020,

Options for Relapsed-Refractory Follicular Lymphoma

Drug	Disease characteristics	Number of patients (total/follicular)	ORR	CRR	PFS, median (mo)	DOR, median (mo)	2-y OS	Most common grade 3-4 adverse events (present in ≥5% of patients)*
Idelalisib ^{27,28}	Double refractory to rituximab and alkylating agents	72/125	66%+	14%+	11 (11+)	12 (11+)	70%+	Neutropenia (27%) ALT elevation (13%) Diarrhea (13%) Pneumonia (7%) Thrombocytopenia (6%)
Duvelisib ¹⁴	Double refractory to rituximab and alkylating agents	129/83	42%+	1%+	10	10	~60%‡	Neutropenia (25%) Diarrhea (15%) Anemia (15%) Thrombocytopenia (12%) Febrile neutropenia (9%) Lipase increased (7%) ALT elevation (5%) Pneumonia (5%) Colitis (5%)
Copanlisib ²⁹	Relapsed or refractory after 2 lines of therapy	142/104	59%+	20%+	13	14	69% augment	Hyperglycemia (40%) Hypertension (24%) Neutropenia (24%) Pneumonia (11%) Diarrhea (9%) Anemia (5%) Thrombocytopenia (5%)

Studies	Number of patients	ORR	CRR	Main adverse events
Bispecific antibodies Mosunetuzumab ³⁶ Glofitamab ³⁷	82 24	63% 68%	43% 50%	Cytokine release syndrome and ICANS (essentially grade 1-2), cytopenias (20%-25% grade ≥3)
Chimeric antigen receptor T cells Axicabtagene ciloleucel ³⁸	80	95%	81%	Cytokine release syndrome (7% grade ≥3), ICANS (15% grade ≥3), cytopenias


Gilles Salles, How do I sequence therapy for follicular lymphoma?, Hematology Am Soc Hematol Educ Program, 2020,

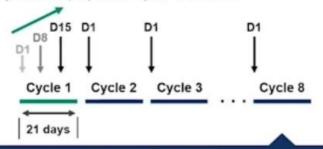
Abstract #702: Mosunetuzumab Shows Promising Efficacy in Patients with Multiply Relapsed Follicular Lymphoma: Updated Clinical Experience from a Phase I Dose-Escalation Trial

Assouline S et al.

Mosunetuzumab: a bispecific antibody targeting PE * CD3 and CD20

- Full-length humanized IgG1 antibody
 - Longer half-life than fragment-based drugs
 - PK properties enable once weekly to q3w dosing
- Mechanism of action
 - Redirects T-cells to engage and eliminate malignant B-cells
 - Conditional agonist: T-cell activation dependent on B-cell engagement
- Amino-acid substitution (N297G) to inactivate ADCC and avoid destruction of engaged T cells

Presented at ASH CARE 2019, Dr. L. Sehn



Phase I/Ib study of mosunetuzumab in R/R B cell lymphomas (GO29781)

Mosunetuzumab dosing schedule*

- Step-up dosing (IV) during Cycle 1 D1/D8/D15
- Cycle 1 D1/D8/D15 dose: 0.4/1.0/2.8–1/2/13.5mg
- · Cycles 2-8 (D1) dose: Cycle 1 D15 dose

Treatment duration: CR: 8 cycles

PR or SD: 17 cycles (or progression, toxicity)

Retreatment was permitted for patients with a CR who relapsed

Key inclusion criteria (FL cohort)

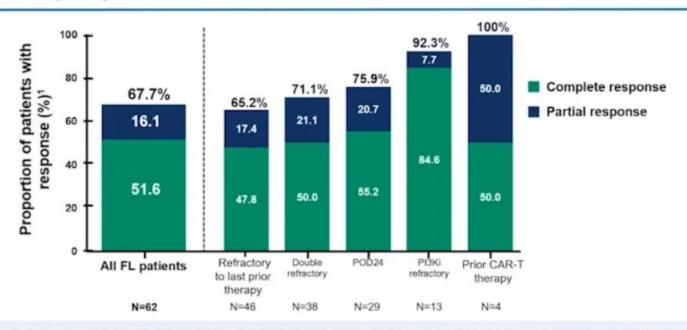
- R/R FL (Grades 1–3A; expected to express CD20)
- · ≥2 prior systemic therapies
- Age ≥18 years
- ECOG performance status ≤1

GO29781 primary objectives

- · Safety and tolerability
- MTD and DLTs

RP2D

Best objective response¹

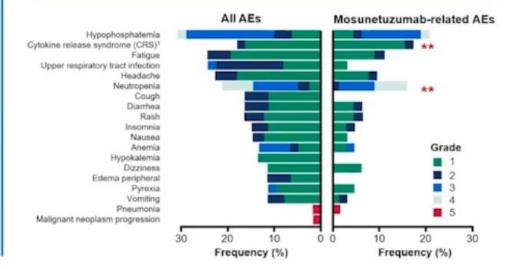

*Premedication with steroids (20mg IV dexamethasone or 80mg IV methylprednisolone) required C1–2 and optional C3+.
DLTs, dose-limiting toxicities; MTD, maximum tolerated dose, RP2D, recommended phase two dose

1. Cheson BD, et al. J Clin Oncol 2007;25(5):579-86.

Mosunetuzumab response rates (investigator assessed) in patients with R/R FL

High complete response rates were observed across multiple groups according to prior therapy including those with double refractory disease, POD24, PI3Ki refractory, and those who received prior CAR-T therapy.

INV, investigator-essessed 1. Cheson BD, et al. J Clin Oncol 2007;25(5):579–86



Adverse events

Summary of AEs*, n (%)	Safety evaluable patients (N=62)			
Any AE	60 (96.8)			
Treatment related	45 (72.6)			
Serious AE	22 (35.5)			
Treatment related	9 (14.5)			
Grade ≥3 AE	42 (67.7)			
Treatment related	22 (35.5)			
Grade 5 AE (excluding disease progression)	1* (1.6)			
AE leading to treatment discontinuation	5** (8.1)			
Treatment related	4 (6.5)			

AEs with an incidence of ≥10% or an NCI-CTCAE Grade of 5

Lee DW, et al. Biol Blood Marrow Transplant 2019;25(4):625–38.

^{*}Grade 5 AE: pneumonia (n=1; onset Day 73)

[&]quot;AEs leading to treatment discontinuation: pneumonia, atrial flutter (unrelated to treatment), neutropenia, arthritis, alanine aminotransferase increased (n=1 each)

Unmet needs Follicular NHL

- 2nd Line treatment for Benda naïve: BR
- If treated with BR as first line:
 - No FL registry to clarify which patient population may be better managed by one treatment over another:
 - Retreat with R-chemo (if not POD24)
 - CarT cell tx (Zuma-12)
 - BiTE tx
 - BTKis, revlimid, PI3K inhibitors

Innovate Trial:

Phase 3 Trial of Ibrutinib plus Rituximab in Waldenström's Macroglobulinemia

Treon SP et al. NEJM 2015;372:1430-40 Dimopoulos et al. NEJM 2018;378:2399 2410

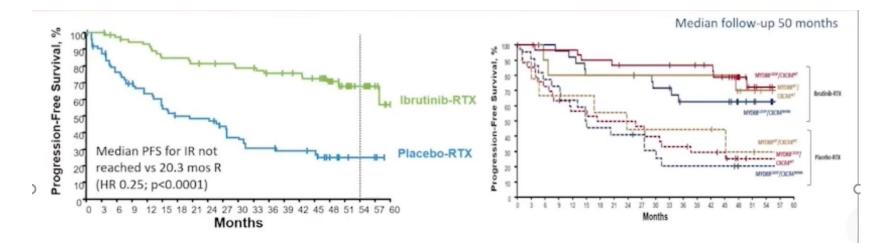
open-label, international, multicenter, phase 3 study

ibrutinib + rituximab Oral ibrutinib 420 mg once daily PO until PD N rituximab 375 mg/m² IV Key eligibility criteria D on day 1 of weeks 1-4 and 0 weeks 17-20 . Confirmed WM (N=150) M Measurable disease INE (serum lgM > 0.5 g/dL)Arm B* • ECOG status of 0-2 placebo + rituximab 3 matching placebo capsules until PD rituximab 375 mg/m2 IV on day 1 of weeks 1-4 and weeks 17-20

- May 2016 Ibrutinib monotherapy first approved in Canada
- Mar 2019 Ibrutinib + Rituximab approved in Canada
- Frontline and relapsed disease

- If refractory to last rituximabcontaining regimen defined as
- Relapse after <12 months of treatment <u>OR</u>
- Failure to achieve at least a minor response

Arm C (open-label substudy; N=31)* Not eligible for randomization

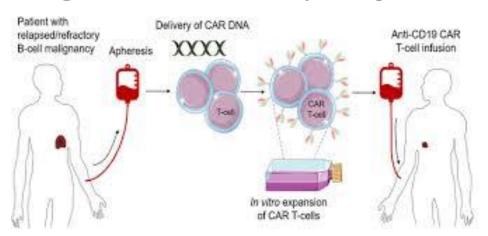

> ibrutinib 420 mg once daily PO until PD

Abstract # 336: Five-Year Follow-Up of Ibrutinib Plus Rituximab Vs Placebo Plus Rituximab for Waldenstrom's Macroglobulinemia: Final Analysis From the Randomized Phase 3 iNNOVATE™ Study Buske C. et al.

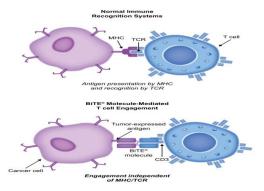
Abstract #2937: Long-Term Follow-up of Ibrutinib Treatment for Rituximab-Refractory Waldenström's Macroglobulinemia: Final Analysis of the Open-Label Substudy of the Phase 3 iNNOVATE Trial. *Trotman et al.*

In substudy of heavily pretreated, rituximab-refractory patients:

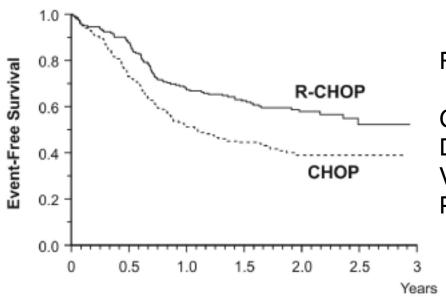
- · Median PFS 39 months much shorter
- PFS influenced by genotype: MYD88^{MUT}/CXCR4^{WT} not reached; MYD88^{MUT}/CXCR4^{MUT} 18 months



Diffuse Large B Cell Lymphoma



CarT cell Tx

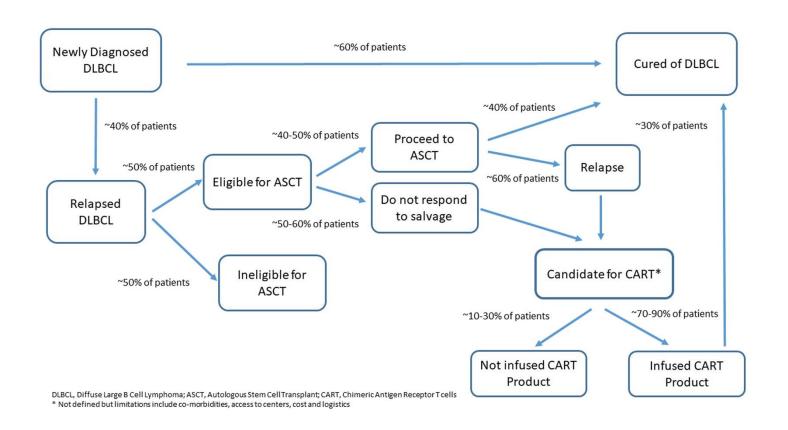

BiTE Tx

Mammanan Genome volume 29, pages739-756(2018)

Treatment of 1L DLBCL = R-CHOP

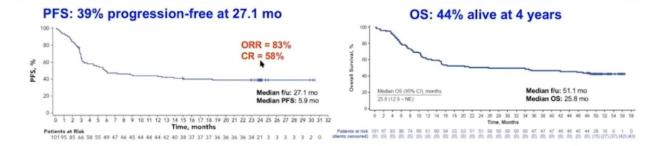
Rituximab: 375 mg/m2

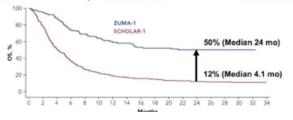
Cyclophosphamide 750 mg/m2
Doxorubin 50 mg/m2
Vincristine 1.4 mg/m2
Prednisone 100 mg po od x 5d


Event-free survival of 399 patients comparing CHOP to R-CHOP (P<0.001)

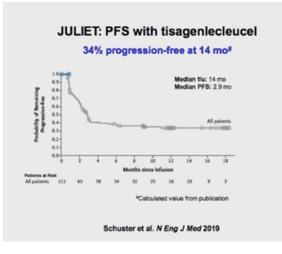
- The addition of novel therapies to R-CHOP have no shown OS benefit
- POLLARIX Trial results pending (Polatuzumab + RCHP vs RCHOP)
- Trials to start including acalabrutinib to RCHOP

Novel targets in Aggressive Lymphoma


Kami Maddocks, Novel targets in aggressive lymphoma, Hematology Am Soc Hematol Educ Program, 2020, Figure 1.



Durable Responses with CART Cell Tx in RR DLBCL


ZUMA-1: Axi-cel in r/r large B-cell lymphoma

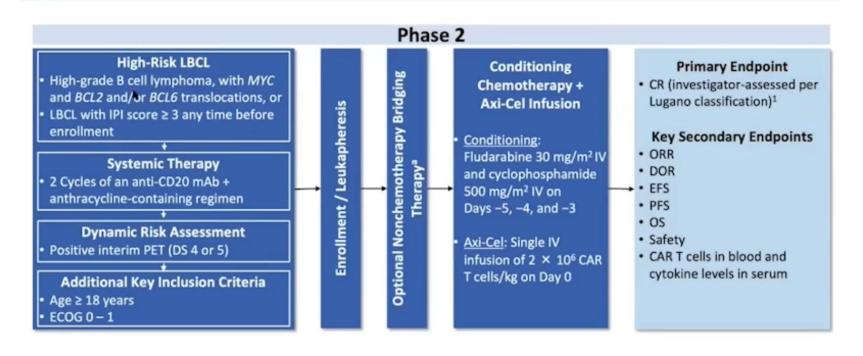
Standardized OS Comparison: ZUMA-1 vs. SCHOLAR-1 (historical)

Neelapu et al. N Eng J Med 2017 Locke et al. Lancet Oncol 2019 Neelapu et al. ASH 2019 Jacobson et al, ASH 2020

2004

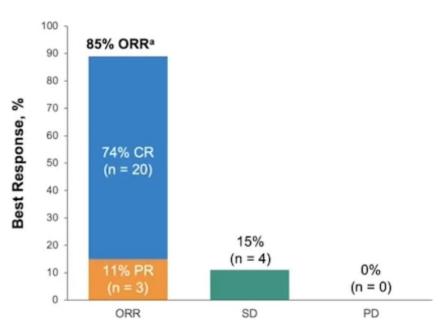
Safety of CART trials in NHL

Safety in multicenter CD19 CAR T trials in adult NHL


Study/Spons or	Product	N	CRS All Grades	CRS Grade ≥3	NT All Grades	NT Grade ≥3	Toci usage	Steroid usage	Ref
ZUMA1 Kite	CD19/CD3ζ/ CD28	108	92%	11%	67%	32%	45%	29%	Neelapu et al, NEJM 2017
JULIET Novartis	CD19/CD3ζ/ 4-1BB	111	58%	22%	21%	12%	15%	11%	Schuster et al, NEJM 2019
TRANSCEND Juno	CD19/CD3ζ/ 4-1BB	269	42%	2%	30%	10%	20%	21%	Abramson et al, Lancet 2020

- Lee criteria used for CRS grading on ZUMA1 and TRANSCEND
- · U Penn criteria used for CRS grading on JULIET
- All trials used CTCAE criteria for neurotoxicity (NT) grading
- 3 deaths on ZUMA-1
 - 2 related to axi-cel: cardiac arrest, HLH
 - 1 unrelated pulmonary embolism
- 7 deaths on TRANSCEND
 - 4 related to liso-cel: diffuse alveolar damage (DLT), pulmonary hemorrhage, multiple organ dysfunction syndrome, cardiomyopathy
 - > 3 unrelated to liso-cel: fludarabine leukoencephalopathy, septic shock, and PML

ZUMA-12: Multicenter phase 2 study of axi-cel as part of first-line therapy in patients with high-risk LBCL

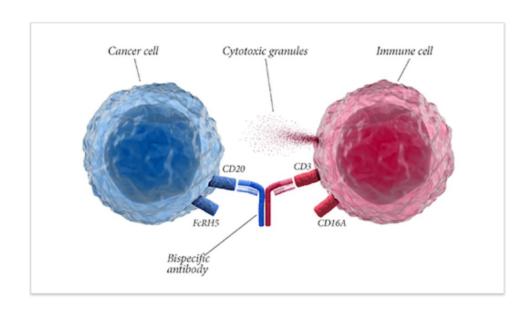

Neelapu et al, ASH 2020, Abstract 405

ZUMA-12 interim analysis: Efficacy

	Response Evaluable N = 27 ^b
Median follow-up (range), months	9.3 (0.9 – 18.0)
Patients with ≥ 6-month follow-up, n (%)	19 (70)
Patients with ongoing response as of data cutoff	19 (70)
Median time to response (range), months	
Initial objective response	1.0 (0.9 - 3.1)
CR	1.0 (0.9 - 6.4)
Patients converted from PR / SD to CR, n (%)	5 (19)
PR to CR	4 (15)
SD to CR	1 (4)

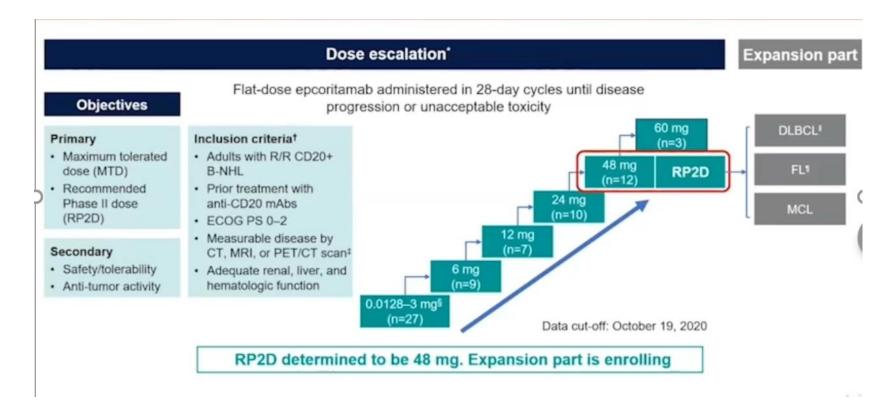
Neelapu et al, ASH 2020, Abstract 405

Abstract #405: Interim Analysis of ZUMA-12: A Phase 2 Study of Axicabtagene Ciloleucel (Axi-Cel) as First-Line Therapy in Patients with High-Risk Large B Cell Lymphoma Neelapu et al.


- Adults > 18 met 2 criteria for high risk LBCL:
 - Double or Triple Hit Lymphoma by FIST or IPI > 3
 - Positive interim PET after 2 cycles of R-chemo
- Primary endpoint: investigator assessed CR rate of 74%, 85% ORR
- Axi-cel appears to be safe and effective in DLBCL not responding to early frontline R-chemotx
 - Approved in Canada for DLBCL in 3rd line
 - The future: Zuma-7 (Second line ASCT eligible results pending)

Bi-specific T cell engagers

- Not yet FDA approved
- Mosunetuzumab
- Gliofitamab
- Odronextamab
- Epcoritamab
- Plamotamab



www.globenewswire.com

Abstract # 402: Subcutaneous Epcoritamab Induces Complete Responses with an Encouraging Safety Profile across Relapsed/Refractory B-Cell Non-Hodgkin Lymphoma Subtypes, Including Patients with Prior CAR-T Therapy: Updated Dose Escalation Data Hutchings M, et al.

Abstract # 402: Subcutaneous Epcoritamab Induces Complete Responses with an Encouraging Safety Profile across Relapsed/Refractory B-Cell Non-Hodgkin Lymphoma Subtypes, Including Patients with Prior CAR-T Therapy: Updated Dose Escalation Data Hutchings M, et al.

Characteristic	All histologies*	DLBCL	FL
	(N=68)	(n=46)	(n=12)
Median age, years (range)	68 (21-84)	68 (21-82)	73 (35-84)
Male, n (%)	45 (66)	30 (65)	8 (67)
Median time since most recent relapse or progression, months (range)	1.6 (0-88)	1.5 (0-88)	1.6 (1-17)
Prior lines of therapy, median (range)	3 (1-18)	3 (1-6)	5 (1-18)
Prior therapies, n (%) Anti-CD20 mAb Anthracyclines Alkylating agents Autologous stem cell transplantation CAR-T cell therapy	68 (100)	46 (100)	12 (100)
	62 (91)	46 (100)	9 (75)
	67 (99)	46 (100)	12 (100)
	7 (10)	5 (11)	1 (8)
	6 (9)	5 (11)	0 (0)
Refractory to, n (%) Most recent systemic therapy Alkylating agents CD20 mAbs	59 (87)	42 (91)	10 (83)
	56 (82)	40 (87)	9 (75)
	60 (88)	42 (91)	10 (83)
ECOG PS,* n (%) 0 1 2	35 (52)	23 (50)	6 (50)
	29 (43)	21 (46)	4 (33)
	3 (4)	2 (4)	1 (8)

Patients were heavily pretreated; most patients were refractory to anti-CD20 therapy

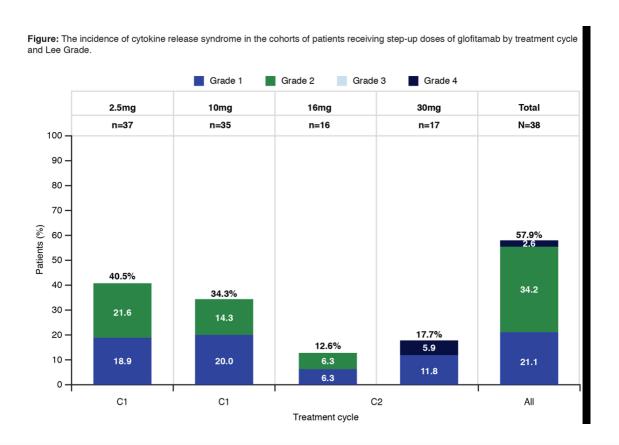
Abstract # 402: Subcutaneous Epcoritamab Induces Complete Responses with an Encouraging Safety Profile across Relapsed/Refractory B-Cell Non-Hodgkin Lymphoma Subtypes, Including Patients with Prior CAR-T Therapy: Updated Dose Escalation Data Hutchings M, et al.

	DLBCL (n=46)		F (n=	MCL [‡]	
Response*	12–60 mg (n=23)	48–60 mg [†] (n=12)	0.76–48 mg (n=11)	12–48 mg (n=5)	0.76–48 mg (n=4)
Evaluable patients, n	22 [§]	115	10	5	4**
ORR, n (%)¶	15 (68)	10 (91)	9 (90)††	4 (80)	2 (50)
CR	10 (46)	6 (55)	5 (50)	3 (60)	1 (25)
PR	5 (23)	4 (36)	4 (40)	1 (20)	1 (25)
Stable disease, n (%)	1 (5)	0	0	0	1 (25)
Progressive disease, n (%)	5 (23)	0	1 (10)	1 (20)	0

Abstract # 626: Glofitamab Step-up Dosing Induces High Response Rates in Patients with Hard-to-Treat Refractory or Relapsed Non-Hodgkin Lymphoma Hutchings M, et al.

- Phase I/Ib, dose-escalation, dose-expansion trial
- Patients (pts) with relapsed or refractory (R/R) non-Hodgkin lymphoma (NHL)
- Obino given day -7 to avoid CRS

Patient Demographics


 Fable: Patient demographics and baseline disease characteristics

	All patients (N=38)
Age — year	
Median	68
Range	(52–85)
Male sex — no. (%)	22 (57.9)
ECOG PS — no. (%)	
0	23 (60.5)
1	15 (39.5)
2	0
Ann Arbor stage at study entry — no. (%)	
Number of evaluable patients*	38 (100)
Stage I	1 (2.6)
Stage II	4 (10.5)
Stage III	7 (18.4)
Stage IV	26 (68.4)
Aggressive non-Hodgkin lymphoma— no. (%)	28 (73.7)
Diffuse large B-cell lymphoma	12 (31.6)
Transformed follicular lymphoma	5 (13.2)
Mantle cell lymphoma	5 (13.2)
Richter's transformation	5 (13.2)
Follicular lymphoma (Grade 3B)	1 (2.6)
Indolent non-Hodgkin lymphoma — no. (%)	10 (26.3)
Follicular lymphoma (Grade 1-3A)	10 (26.3)

CRS rates and ORRs

After a median follow-up of 2.8 months, across all efficacy-evaluable pts (n=32) the overall response rate (ORR) and complete metabolic response (CMR) rate was 62.5% and 40.6%, respectively.

Conclusions

- ASH 2020 highlights that treatment of Lymphomas continue to evolve
 - Targeted therapies, New combinations
 - Manipulation of the Immune system in RR disease
- There is no 'one size fits all' approach

Translates into improved life expectancies

ASH 2020 QUESTIONS

