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abstract

PURPOSE Chimeric antigen receptor (CAR) T-cell therapy of B-cell malignancies has proved to be effective. We
show how the same approach of CAR T cells specific for CD30 (CD30.CAR-Ts) can be used to treat Hodgkin
lymphoma (HL).

METHODS We conducted 2 parallel phase I/II studies (ClinicalTrials.gov identifiers: NCT02690545 and
NCT02917083) at 2 independent centers involving patients with relapsed or refractory HL and administered
CD30.CAR-Ts after lymphodepletion with either bendamustine alone, bendamustine and fludarabine, or
cyclophosphamide and fludarabine. The primary end point was safety.

RESULTS Forty-one patients received CD30.CAR-Ts. Treated patients had a median of 7 prior lines of therapy
(range, 2-23), including brentuximab vedotin, checkpoint inhibitors, and autologous or allogeneic stem cell
transplantation. The most common toxicities were grade 3 or higher hematologic adverse events. Cytokine
release syndrome was observed in 10 patients, all of which were grade 1. No neurologic toxicity was observed.
The overall response rate in the 32 patients with active disease who received fludarabine-based lymphode-
pletion was 72%, including 19 patients (59%) with complete response. With a median follow-up of 533 days, the
1-year progression-free survival and overall survival for all evaluable patients were 36% (95% CI, 21% to 51%)
and 94% (95% CI, 79% to 99%), respectively. CAR-T cell expansion in vivo was cell dose dependent.

CONCLUSION Heavily pretreated patients with relapsed or refractory HL who received fludarabine-based
lymphodepletion followed by CD30.CAR-Ts had a high rate of durable responses with an excellent safety
profile, highlighting the feasibility of extending CAR-T cell therapies beyond canonical B-cell malignancies.
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INTRODUCTION

The majority of patients with classic Hodgkin lym-
phoma (HL) are cured with first-line therapy, but
approximately 15% of patients have primary refractory
disease or relapse after an initial response to treat-
ment.1 The standard of care for patients whose first-
line therapy fails is high-dose chemotherapy followed
by autologous stem cell transplantation (aSCT), with
about half of patients relapsing after transplantation.2

The prognosis for these individuals is dismal, with
allogeneic stem cell transplantation (alloSCT) tradi-
tionally offering the best chance for sustained re-
mission,3 but with high morbidity and mortality.4

Hodgkin/Reed-Sternberg (HRS) cells universally ex-
press CD30,5,6 which has proved to be an effective and
safe target for novel therapies.7 The CD30-specific
antibody drug conjugate brentuximab vedotin (BV) is
active in HL,8 but offers sustained remissions in fewer
than a quarter of patients with relapsed or refractory (r/r)
disease.9 Patients with relapsed HL can also respond to

checkpoint inhibitors (CPIs)10,11 and to the adoptive
transfer of cytotoxic T lymphocytes targeting Epstein-
Barr virus latent membrane proteins,12,13 underlining
the susceptibility of this tumor to T-cell–mediated im-
mune control. Adoptive transfer of chimeric antigen
receptor T cells (CAR-Ts), which combines antibody-
mediated antigen specificity with the effector function
and self-replication of T lymphocytes, offers the op-
portunity to infuse large numbers of T cells with
defined antigen specificity and MHC-independent
tumor targeting.14

In a previous phase I study aimed at assessing safety,
we reported that CAR-Ts targeting CD30 (CD30.CAR-Ts)
infused without lymphodepleting preconditioning were
well tolerated but produced limited antitumor activity in
patients with HL,15 with an overall response rate (ORR)
of only 33%. We report the outcome of 41 patients with
r/r HL treated at 2 independent centers with autologous
CD30.CAR-Ts after lymphodepleting chemotherapy in
2 parallel phase I/II trials.
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METHODS

Study Design and Patients

Patients were enrolled and treated at the University of North
Carolina (UNC; Chapel Hill, NC) and Baylor College of
Medicine (BCM; Houston, TX) in 2 institutional review
board–approved independent protocols (ClinicalTrials.
gov identifiers: NCT02690545 and NCT02917083, re-
spectively) conducted in accordance with the Declaration
of Helsinki and International Conference on Harmonization
guidelines for Good Clinical Practice. All patients provided
written informed consent. Patients received autologous
CD30.CAR-Ts manufactured at each Institution in Good
Manufacturing Practice–compliant facilities (IND 14688
and IND 17272), using the same clinical grade gamma-
retroviral vector and following the same Standard Operating
Procedure for cell manufacturing (Appendix Table A1,
online only). Patients with r/r CD301 lymphomas who ex-
perienced disease progression after at least 2 lines of
therapy were eligible for enrollment. Documented CD30
expression by immunohistochemistry was required, but
there was no specific cutoff. Pediatric patients and patients
with other CD301 lymphomas were enrolled in both pro-
tocols, but we report only the outcome of 41 adult patients
with HL enrolled at UNC (n 5 25) and at BCM (n 5 17).
One patient was treated at UNC in the first cohort and
2 years later at BCM. Both infusions for this patient were
included in the safety analyses, response and progression-
free survival (PFS) calculations, but only the first infusion in
overall survival (OS) calculations.

Bridging chemotherapy was allowed before lymphode-
pletion. Patients who achieved a complete remission (CR)
with bridging therapy were allowed to receive lymphode-
pletion and CAR-T infusion at UNC, but not at BCM. For

patients enrolled at BCM, lymphodepletion consisted
of cyclophosphamide 500 mg/m2/day and fludarabine
30mg/m2/day for 3 days; at UNC, bendamustine 90mg/m2/day
for 2 days was used for the first cohort, and bendamustine
70 mg/m2/day and fludarabine 30 mg/m2/day for 3 days
were used for the second cohort. Infusion of CD30.CAR-Ts
occurred 2-5 days after finishing lymphodepletion. Pa-
tients enrolled at BCM received 1 of 3 dose levels (23 107

CAR-Ts/m2, 1 3 108 CAR-Ts/m2 or 2 3 108 CAR-Ts/m2),
whereas at UNC, patients received 1 3 108 CAR-Ts/m2 or
2 3 108 CAR-Ts/m2. An expansion cohort of patients at
both institutions received the highest dose level of 2 3 108

CAR-Ts/m2. A second infusion of CD30.CAR-Ts was
allowed in patients who had stable disease (SD) or partial
response (PR) after the first treatment.

End Points and Study Procedures

The primary objective of the studies was to establish a safe
dose of CD30.CAR-Ts to infuse after lymphodepletion.
Secondary end points included ORR, OS, and measure-
ment of the expansion and persistence of CD30.CAR-Ts in
the peripheral blood (PB) after infusion. Data were ana-
lyzed separately in patients who received nonfludarabine-
based lymphodepletion and those who received regimens
containing fludarabine. Cytokine release syndrome (CRS)
was graded according to the criteria of Lee et al16 and
American Society for Transplantation and Cellular Therapy
consensus grading.17 All other toxicities, including neuro-
logic, were graded using the National Cancer Institute’s
Common Terminology Criteria for Adverse Events, version
4.0. All patients had baseline and post-treatment positron
emission tomography/computed tomography scans, with
response assessed at 6-8 weeks after CD30.CAR-T infusion
using the Lugano criteria.18 Calculation of the response rate

CONTEXT

Key Objective
Are CD30-specific chimeric antigen receptor (CAR) T cells (CD30.CAR-Ts) effective against Hodgkin lymphoma (HL)? To

our knowledge, only 2 small clinical trials investigating the activity of CD30.CAR-Ts for HL have been published until now:
our first 7-patient report in which no lymphodepleting chemotherapy was given before CD30.CAR-Ts and another
16-patient report from China using various lymphodepletion regimens. Both studies showed limited efficacy, with only
2 complete responses. Our current, larger study demonstrates that autologous CD30.CAR-Ts infused after specific
fludarabine-containing lymphodepletion regimensmediate complete and durable responses in patients with relapsed HL
(59% complete responses).

Knowledge Generated
We show that CD30.CAR-Ts administered after lymphodepletion into patients with relapsed or refractory HL yield a high

response rate and duration, with an excellent safety profile and minimal toxicity. Importantly, most of these patients had
previously progressed on prior immunotherapies, including brentuximab vedotin and checkpoint inhibitors.

Relevance
CD30.CAR-Ts have clinical activity in relapsed or refractory HL with a limited adverse event profile. There is value in

exploring the use of this therapy as an earlier line of treatment for patients with this disease.
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and PFS included only patients who had active disease at
the time of lymphodepletion. PFS was defined as days from
CD30.CAR-T infusion to relapse, progression, or death.
Patients without events were censored at the last follow-up
date or at the cutoff date of February 14, 2020, whichever
was earlier. PFS was summarized using the Kaplan-Meier
method in all patients with measurable disease at the time
of infusion. CD30.CAR-T expansion and cytokine levels
were measured as detailed in the Data Supplement. At BCM,
dose escalation followed a modified continual reassessment
method with cohorts of 3, allowing a maximum of 6 patients
treated at each level. At UNC, a standard 3 1 3 design was
used for the 2 dose levels.

RESULTS

Patients

Between September 2016 and December 2019, 28 pa-
tients with HL were enrolled at UNC and 25 received

CD30.CAR-Ts. Between June 2017 and November 2019,
28 patients were enrolled at BCM and 17 received
CD30.CAR-Ts, including 1 patient treated at UNC 2 years
earlier (Appendix Fig A1, online only). The median age for
treated patients was 35 years (range, 17-69 years), and
patients had a median of 7 prior lines of therapy (range,
2-23). Thirty-eight patients (90%) received prior BV,
32 (84%) of whom had experienced disease progression on
BV. Thirty-four patients (81%) received prior CPIs, 32
(76%) received prior aSCT, and 10 (24%) received prior
alloSCT. Twenty-eight patients (67%) received bridging
therapy between cell collection and lymphodepletion
(Table 1). The most common therapies used for bridging
were bendamustine (32%), nivolumab (25%), BV (7%),
and gemcitabine-based regimens (11%).

Safety

There were no dose-limiting toxicities associated with
CD30.CAR-T infusions in either study. For the safety

TABLE 1. Baseline Patient Characteristics

Characteristic
All Patients
(N 5 42)a

Benda
(n 5 8)a

Benda-Flu
(n 5 17)

Cy-Flu
(n 5 17)a

HL subtype

NS 32 (76) 6 (75) 10 (59) 16 (94)

MC 4 (10) 2 (25) 2 (12) 0

NOS 6 (14) 0 5 (29) 1 (6)

Stage at diagnosis

I-II 14 (33) 1 (13) 7 (41) 6 (35)

III-IV 28 (67) 7 (88) 10 (59) 11 (65)

Median age (range), years 35 (17-69) 49 (23-67) 32 (23-45) 36 (17-69)

Male sex 28 (67) 5 (63) 13 (76) 10 (59)

ECOG PS $ 1 34 (81) 5 (63) 12 (71) 17 (100)

Median No. of prior therapies (range) 7 (2-23) 7.5 (5-17) 8 (3-23) 5 (2-10)

Bridging therapy 28 (67) 8 (100) 10 (59) 10 (59)

Prior BV 38 (90) 8 (100) 16 (94) 14 (82)

Progression on BVb 32 (84) 6 (75) 12 (75) 14 (100)

Prior CPI 34 (81) 7 (88) 13 (76) 14 (82)

Prior aSCT 32 (76) 7 (88) 14 (82) 11 (65)

Prior alloSCT 10 (24) 2 (25) 8 (47) 0 (0)

CAR-T cells/m2

2 3 107 3 (7) 0 0 3 (18)

1 3 108 9 (21) 3 (38) 0 6 (35)

2 3 108 30 (71) 5 (63) 17 (100) 8 (47)

NOTE. All data are No. (%) unless otherwise specified.
Abbreviations: alloSCT, allogeneic stem cell transplantation; aSCT, autologous stem cell transplantation; benda, bendamustine; BV,

brentuximab vedotin; CAR-T, CD30-specific chimeric antigen receptor; CPI, checkpoint inhibitor; cy, cyclophosphamide; ECOG PS, Eastern
Cooperative Oncology Group performance status; flu, fludarabine; HL, Hodgkin lymphoma; MC, mixed cellularity; NOS, not otherwise specified;
NS, nodular sclerosis.

aBoth treatments are included for the patient who was treated twice.
bOne patient who received benda-flu and 3 patients who received cy-flu are not included in denominator because they had not received prior

BV.
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assessment, the patient who was treated at UNC and later
at BCM was considered twice (42 treatments total). CRS
was observed in 10 patients (24%) and was more fre-
quent with the cyclophosphamide-based conditioning
regimen than with the bendamustine-based regimen
(41% v 12%; Table 2). All CRS events were grade 1 and
resolved spontaneously with no requirement for tocilizu-
mab and/or steroid administration. The median time of
onset of CRS was day 10 (range, 7-24 days) and median
duration was 4 days (range, 1-6 days). Cytokines associ-
ated with the occurrence of CRS were elevated in the
plasma of patients developing clinical signs of CRS (Ap-
pendix Fig A2, online only). Neurotoxicity was not observed.
Twenty patients (48%) developed a nonpruritic, nontender,
maculopapular skin rash, which was more commonly
found in patients receiving cyclophosphamide (82%)
versus bendamustine (24%; Fig 1). None of the rashes
required specific treatment, and all resolved spontaneously
within 7-10 days. The majority of grade 3 or higher toxicities
(Table 2) reported during the first 6 weeks were hemato-
logic and consistent with toxicities previously described in
patients with lymphoma receiving lymphodepleting che-
motherapy.19 One patient experienced grade 3 acute
kidney injury and hypotension after starting chemotherapy
and did not complete the scheduled lymphodepletion, but
when symptoms resolved, was able to receive CD30.CAR-Ts.

Grade 3-4 neutropenia that had not resolved by day
28 post–CAR-T infusion occurred in 4 patients (10%;
Table 2); however, all resolved their neutropenia by day 90
without ongoing growth factor support. Ten patients (24%)
had grade 3-4 thrombocytopenia that had not resolved by
day 28. Four patients (10%) were platelet transfusion in-
dependent, but had grade 3-4 thrombocytopenia at month
3, with 1 patient having persistent grade 3, which improved
to grade 2 at 1 year and grade 1 at 2 years post-therapy.

Efficacy

The ORR for the 37 evaluable patients was 62% (Table 3;
Appendix Fig A3, online only). Thirty-four patients un-
derwent lymphodepletion containing fludarabine (17
together with bendamustine at UNC and 17 with cyclo-
phosphamide at BCM). Of these 34 patients, 2 at UNCwere
in CR at the time of infusion, maintained CR, and were not
included in the efficacy analysis. Of the remaining 32
patients evaluable for disease response, the ORRwas 72%,
with 19 patients (59%) achieving CR, 4 (13%) achieving
PR, 3 (9%) showing SD, and 6 (19%) experiencing pro-
gressive disease (PD) at the time of the first response
assessment. At BCM, the ORR for patients treated at the
target dose level was similar to that of patients at lower dose
levels (63% v 67%, respectively). Eight patients (5 active
and 3 inactive disease) enrolled at UNC received

TABLE 2. Grade 3 or Higher Adverse Events and Adverse Events of Special Interest

Adverse Event
All Patients
(N5 42)a

Benda
(n 5 8)a

Benda-Flu
(n 5 17)

Cy-Flu
(n 5 17)a

Lymphopenia 42 (100) 8 (100) 17 (100) 17 (100)

Leukopenia 24 (57) 3 (38) 8 (47) 13 (76)

Anemia 5 (12) 0 2 (12) 3 (18)

Hypoalbuminemia 3 (7) 0 0 3 (18)

Hyponatremia 2 (5) 0 0 2 (12)

Hyperkalemia 0 0 0 1 (6)

Dyspnea 1 (2) 0 0 1 (6)

Rash (any grade) 20 (48) 2 (25) 4 (24) 14 (82)

Headache 1 (2) 0 0 1 (6)

Pharyngitis 1 (2) 0 1 (6) 0

Lung infection 1 (2) 0 1 (6) 0

Neutropenia 20 (48) 2 (25) 7 (41) 11 (65)

Grade 3/4 neutropenia not resolved by day 28 4 (10) 0 2 (12) 2 (12)

Prolonged grade 3/4 neutropenia (not resolved by month 3)b 0 0 0 0

Thrombocytopenia 11 (26) 1 (13) 7 (41) 3 (18)

Grade 3/4 thrombocytopenia not resolved by day 28 10 (24) 0 7 (41) 3 (18)

Prolonged grade 3/4 thrombocytopenia (not resolved by month 3)b 4 (10) 0 3 (18) 1 (6)

Cytokine release syndrome (all grade 1) 10 (24) 1 (13) 2 (12) 7 (41)

NOTE. Data are No. (%).
Abbreviations: benda, bendamustine; cy, cyclophosphamide; flu, fludarabine.
aBoth treatment instances are included for the patient who was treated twice.
bThree patients did not have data at 3 months because they withdrew from the study.
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lymphodepletion using bendamustine alone before
CD30.CAR-T infusion. None of them showed objective
clinical responses when treated with active disease
(Table 3). All patients treated at UNC who were in CR from
bridging therapy maintained their response at the first

response assessment, with 1 patient still in CR 3 years after
treatment. The 1-year OS for all 41 patients (counting the
patient treated at UNC and subsequently at BCM only
once) was 94% (95% CI, 79% to 99%), and no significant
differences were observed between lymphodepletion reg-
imens (Fig 2A; Appendix Fig A4A, online only).

Three patients died of PD. The 1-year PFS for patients with
measurable disease at the time of treatment was
36% (95%CI, 21% to 51%; Fig 2B) and significantly longer
in patients receiving a fludarabine-based condition-
ing versus bendamustine alone (P 5 .0002; Fig 2C). The
1-year PFS for patients with measurable disease was
41% (95% CI, 24% to 58%) for all patients who received
fludarabine-based lymphodepletion and 61% (95% CI,
35% to 79%) for those who achieved CR as initial response
(Appendix Fig A4B). The median PFS for the 19 patients
with active disease at the time of lymphodepletion/infusion
who achieved CR was 444 days (95% CI, 26 to infinity;
Fig 2D). Ten patients with active disease at the time of
treatment had not experienced disease progression after
therapy at the time of data analysis, including 5 who
continue to be in CR more than a year (15, 16, 16, 22, and
25 months) after initial response assessment (Fig 2E). The

A C

B D ECD8 CD30

FIG 1. Skin rash and biopsy. (A-B) Examples of the characteristic rash that develops in some patients given
CD30-specific chimeric antigen receptor (CAR) T cells (CD30.CAR-T cells). (C-E) Biopsy revealed a spongiotic
dermatitis with occasional eosinophils (epidermal edema with few intraepidermal blisters filled with neu-
trophils and eosinophils, with increased lymphocytes within the papillary dermis and occasional eosinophils
within the deeper dermis surrounding skin adnexa). Immunohistochemistry demonstrated amixed population
of lymphocytes with a CD4:CD8 ratio of approximately 1.5:1. Apart from very rare scattered cells, CD30 stain
was negative. Quantitative polymerase chain reaction for the CD30.CAR transgene was positive in DNA
isolated from biopsy material.

TABLE 3. Clinical Responses in Patients With Measurable Disease at
the Time of Treatment

Response
All Patients
(N 5 37)

Benda
(n 5 5)

Benda-Flu
(n 5 15)

Cy-Flu
(n 5 17)

ORR

CR 1 PR 23 (62) 0 (0) 12 (80) 11 (65)

Response rate

CR 19 (51) 0 (0) 11 (73) 8 (47)

PR 4 (11) 0 (0) 1 (7) 3 (18)

SD 4 (11) 1 (20) 1 (7) 2 (11)

PD 10 (27) 4 (80) 2 (13) 4 (24)

NOTE. Data are No. (%).
Abbreviations: benda, bendamustine; CR, complete response; cy,

cyclophosphamide; flu, fludarabine; ORR, overall response rate; PD,
progressive disease; PR, partial response; SD, stable disease.
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FIG 2. Clinical outcome. (A) Overall survival (OS) for the 41 patients receiving lymphodepletion with bendamustine alone (benda LD), bendamustine and
fludarabine (benda-flu LD), or cyclophosphamide and fludarabine (cy-flu LD). One patient was treated with benda LD before CD30-specific chimeric
antigen receptor (CAR) T cells (CD30.CAR-T cells) only at University of North Carolina and then 2 years later (continued on following page)
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patient treated at UNC and later at BCM experienced PD
after bendamustine and 13 108 CAR-Ts/m2, but achieved
CR with cyclophosphamide and fludarabine followed by
23 108 CAR-Ts/m2 (both treatment instances are included
in PFS analyses). Three patients received a second infusion
without lymphodepletion, with 2 having PD at subsequent
assessment and 1 having CR but progression several
months later, suggesting limited benefit of a second in-
fusion of CD30.CAR-Ts without lymphodepletion.

CD30.CAR-T Cell Expansion and Persistence

In patients receiving fludarabine-based lymphodepletion,
CD30.CAR-Ts in the PB peaked within the first 2-3 weeks
post infusion. CD30.CAR-T persistence, measured as area
under the curve, was higher in patients receiving 2 3 108

CAR-Ts/m2 than in patients receiving 23 107 CAR-Ts/m2 or
1 3 108 CAR-Ts/m2 (P , .001) regardless of type of
lymphodepletion (Fig 3A; Appendix Fig A5A, online only).
Polymerase chain reaction results correlated with flow
cytometry (Fig 3B; Appendix Fig A5B). A positive corre-
lation was observed between the number of infused
CD30.CAR-Ts and peak expansion (P 5 .008), which,
however, did not correlate with clinical response. Serum
CCL17, a predictive marker of early response assessment in
HL,20 was elevated before CAR-T infusion and had a sig-
nificant decrease (P 5 .009) after treatment in responding
patients (Fig 3C). A significant increase of the homeostatic
cytokines interleukin (IL)-7 and IL-15 was detected over
a period of 4 weeks post lymphodepletion with bend-
amustine and fludarabine (Fig 3D). Fludarabine was es-
sential in promoting the homeostatic cytokine milieu
because patients receiving fludarabine-based regimens
showed higher levels of IL-7 (P 5 .013) and IL-15
(P 5 .003; Appendix Fig A5C), which also corresponded
with higher CD30.CAR-T persistence (P 5 .016; Appendix
Fig A5), versus bendamustine alone. Biopsies obtained at
the time of relapse demonstrated continued expression
of CD30 by tumor cells.

DISCUSSION

The outcome for patients with r/r HL whose salvage therapy
has failed is poor.21 In this independent 2-center study, we
demonstrated that autologous CD30.CAR-Ts infused after
fludarabine-based lymphodepletion is well tolerated and
have significant clinical activity in heavily pretreated pa-
tients with r/r HL, with an ORR of 72%, CR rate of 59%, and
PFS of 41% at the 1-year follow-up. Excellent responses
were seen despite the substantial number of prior therapies

that patients received, which included the most recent
immunotherapy-based approaches, BV, and/or CPIs.

Recent trials have assessed newer therapies in patients
with r/r HL. Younes et al8 administered BV to patients who
experienced progression after aSCT or at least 2 prior
regimens, reporting an ORR of 75%, CR rate of 34%, and
median duration of response of 20.5 months for patients
achieving CR8. The Checkmate 205 study evaluated
treatment with nivolumab in patients with HL who experi-
enced disease progression after aSCT,22 reporting an ORR
of 69%, CR rate of 16%, and PFS of 22.2 months in pa-
tients achieving CR. Our ORR of 72%, CR rate of 59%, and
median PFS of 14.8 months for patients achieving CR after
infusion of CD30.CAR-Ts compares favorably with those
receiving BV and CPI therapy, with our population having
beenmore heavily pretreated. Of note, 14 of the 29 patients
in whom BV failed achieved CR post–CAR-Ts. The 1-year
OS of 94% highlights that even patients who had disease
progression after CAR-T therapy may have a prolonged life
expectancy. Although it is possible that there is a selection
bias in patients who are able to participate in cell therapy
clinical trials having more indolent disease, OS in this trial
was similar to patients who experienced disease progres-
sion after CPI therapy22,23 and likely reflects instead the
natural history of HL. Patients received different treatments
after relapse. Additional studies are required to assess
whether the effect of CAR-T therapy on tumor biology and
the immune response will affect the tumor’s susceptibility to
subsequent therapies.

Treatment with CD19- or B-cell maturation antigen
(BCMA)-redirected CAR-Ts preceded by lymphodepletion
achieved robust clinical responses in patients with acute
lymphoblastic leukemia (ALL),24 diffuse large B-cell
lymphoma,19,25 and multiple myeloma.26 We found that
targeting CD30 in HL with CAR-Ts can be similarly effective.
Although CD30.CAR-Ts showedmodest activity in HL when
infused without lymphodepletion,15 robust clinical re-
sponses were achieved when these cells were infused in
hosts lymphodepleted with fludarabine-containing regi-
mens. In contrast, no objective clinical responses were
observed when lymphodepletion contained only bend-
amustine.27 Although fludarabine and cyclophosphamide
do not have significant anti-HL activity, bendamustine is
a potential therapy for r/r HL, with an ORR of 53%.
However, this benefit is generally short lived, with a median
duration of response of 5 months.28 Even though most
patients in our study had chemotherapy-refractory disease,

FIG 2. (Continued). received cy-flu LD before CD30.CAR-T cells at Baylor College of Medicine. For the OS analysis, this patient was counted only
according to the first treatment. (B) Progression-free survival (PFS) for all 37 patients with measurable disease at the time of treatment. (C) PFS
for the 37 patients with measurable disease at the time of treatment and receiving lymphodepletion with bendamustine alone (no flu, red line) or
fludarabine containing lymphodepleting regimens (flu, blue line). For the PFS comparison, the patient who received benda before CD30.CAR-
T cells only and then cy-flu before CD30.CAR-T cells 2 years later was counted in each treatment group. (D) PFS for the 19 patients with
measurable disease at the time of treatment and achieving complete response (CR). The median PFS for these patients was 444 days (95% CI,
260 to infinity). (E) Swimmer plot for all 42 patients (including the one treated at the both institutions). Gray stars indicate patients treated in CR.
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with almost half previously treated with bendamustine, re-
sponses to CD30.CAR-Ts weremore durable than responses
to bendamustine. Moreover, there was a significant benefit
with the addition of fludarabine to bendamustine. Therefore,
it is unlikely that the antitumor activity of bendamustine has
a meaningful contribution to the responses presented here.

We established a direct correlation between the number of
infused CAR-Ts and their persistence. Our findings are
consistent with the data reported in patients with multiple
myeloma treated with BCMA-redirected CAR-Ts,26 but
contrast with those with CD19-specific CAR-Ts in patients
with ALL, in whom clinical efficacy seems independent of
the number of infused CAR-Ts.24 Interestingly, the corre-
lation between CAR-T numbers and persistence did not
extend to clinical outcomes in our study. These differences
demonstrate the difficulty of correlating outcomes across
CAR-T studies that use different targets and diverse single-
chain variable fragments, and treat patients with different
tumor types. Previous clinical studies also suggested
a correlation between the development of CRS and the
efficacy of CAR-T therapy. This was not evident in the
current study, with a modest incidence and intensity of
CRS. CRS is mediated at least in part by induction of
a proinflammatory milieu by myeloid cells. Patients with HL
are generally immunosuppressed,29,30 which may play
a role in mitigating CRS without impairing effector T-cell
responses, thus calling for future in-depth evaluations
of the dysregulated microenvironment of HL pre– and
post–CAR-T therapy. In addition, HL is unique in that there
is only a small proportion of malignant CD301 cells in the
tumor.31

Other toxicities included transient skin rash. Skin kerati-
nocytes have modest expression of CD30, which can be
found in some inflammatory conditions,32 and CD30.CAR-
Ts may transiently target these or other cells in skin. Irre-
spective of the mechanism, the rash was largely asymp-
tomatic and transient, and not associated with long-term
toxicity. More work is needed to characterize the re-
lationship between cutaneous toxicity and CD30.CAR-Ts.
Moreover, a small proportion of patients had prolonged
cytopenias, particularly thrombocytopenia. Although in

most cases, these can be attributed to lymphodepletion,
some patients had more prolonged cytopenias, including 4
with grade 3-4 thrombocytopenia for greater than 3
months, which could not be explained by the acute effects
of lymphodepletion alone. Although CD30 is expressed on
activated hematopoietic stem and progenitor cells, these
are generally protected from CAR-T attack because of
low levels of antigen expression and intrinsic protection
mechanisms.33 Our study supports these findings because
prolonged cytopenias were rare, self-limiting, and without
significant complications. We propose that prolonged
cytopenias are more likely related to limited hematopoietic
reserve due to extensive prior therapy, which needs to be
evaluated in larger clinical studies. No other significant on-
target toxicities were observed in patients infused with
CD30.CAR-Ts, even at the highest dose, including no
neurologic adverse effects.

Disease relapse after achieving CR post–CAR-T therapies
can occur because of antigen escape and/or insufficient
persistence of the CAR-Ts at the tumor site. Although our
protocol did not mandate tumor biopsies at relapse, CD30
expression was retained in relapsing tumors, suggesting
that recurrence is attributable to insufficient persistence of
CAR-Ts within the highly immunosuppressive tumor mi-
croenvironment of HL. The expression of programmed
death-1 on CD30.CAR-Ts15 indicates that these cells re-
main susceptible to the programmed death-ligand 1 in-
hibition exerted by HRS cells and surrounding infiltrating
macrophages at the tumor site.10 CPIs have efficacy in
treating patients with HL. Future studies could investigate
whether the combination of CD30.CAR-Ts and CPIs im-
proves the likelihood of patients remaining in CR post-
therapy.

In summary, in a 2-center study of a heavily pretreated
population of patients with HL, administration of 2 3 108

CD30.CAR-Ts/m2 after lymphodepletion (with an alkylating
agent and fludarabine) produced remarkable antitumor
activity without significant toxicity. This approach provides
a new therapeutic option that could be administered in
earlier stages of r/r disease.
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APPENDIX Methods

Study design and patients. To generate CD30-specific chimeric
antigen receptor (CAR) T cells (CD30.CAR-Ts), autologous peripheral
blood (PB) mononuclear cells were stimulated with immobilized CD3
and CD28 agonistic antibodies, and an average of 2 3107 activated
T cells were transduced with the gamma-retroviral vector encoding the
CD30.CAR, including the CD28 costimulatory endodomain, and ex-
panded using recombinant cytokines interleukin (IL)-7 and IL-1515

(Appendix Table A1, online only).

Study oversight. The studies were approved by the local in-
stitutional review boards at the University of North Carolina (UNC) and
Baylor College of Medicine (BCM).

End points and study procedures. Cytokines, such as in-
terleukin (IL)-7, IL-15, IL-6, were measured in the plasma by
Luminex assay (R&D Systems, Minneapolis, MN), whereas serum
CCL17 (thymus and activation-regulated chemokine or TARC) was
measured by a specific enzyme-linked immunosorbent assay.
Log values were analyzed and a t test used for those comparisons
because stem and leaf plot of log values looked normal, and
the sample variances were not different. The persistence of
CD30.CAR-Ts in vivo was determined by quantitative polymerase
chain reaction (PCR) and flow cytometry from peripheral blood
samples collected before and at different time points after infusion,
as previously described.15 PCR data were log transformed and the

area under the curve calculated up to 8 weeks post–CAR-T infusion
for each cohort.

Results

Patients. For the 3 patients enrolled at UNC who did not receive
treatment, 2 elected not to proceed with the clinical trial, and 1 who
was heavily pretreated with prior autologous stem cell transplantation,
allogeneic stem cell transplantation (alloSCT), and multiple donor
lymphocyte infusions failed CAR-T cell manufacturing (Appendix Fig
A1). Of the 11 patients who did not receive treatment at BCM, 5 achieved
remission or had too little disease to be treated since procurement
because of bridging therapy; 4were unable to receive treatment because
of abnormal pulmonary function tests, patient preference, lack of
compliance, or opting for alloSCT; and 2 died of rapidly progressive
disease before receiving lymphodepletion (Appendix Fig A1).

Safety. Grade 3 or higher toxicities included lymphopenia (100%),
leukopenia (57%), neutropenia (48%), thrombocytopenia (26%), anemia
(12%), hypoalbuminemia (7%), hyponatremia (5%), hyperkalemia,
dyspnea, pharyngitis, lung infection, and headache (all 2%; Table 2).

CD30.CAR-T cell expansion and persistence. No correlation
was observed between the CD81 cell content of the cellular product
and the peak value of PCR. Five of 8 patients with available data at/
around relapse had CAR-Ts detectable in PB, albeit at low levels
(range, 10-493 copies/mg of DNA).
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Patients underwent cell
procurement

(n = 56)

Not treated
(n = 14)

Received infusion
(n = 42)

DL2
(n = 3)

DL3
(n = 5)

DL3
(n = 17)

Patients at UNC
(n = 25)

Patients at BCM
(n = 17)

Patients received benda
lymphodepletion

(n = 8)

Patients received benda-flu
lymphodepletion

(n = 17)

Patients received cy-flu
lymphodepletion

(n = 17)

DL1
(n = 3)

DL2
(n = 6)

DL3
(n = 8)

FIG A1. Flowchart for CD30-specific chimeric antigen receptor (CAR) T cell (CD30.CAR-T cell) trials including
cell procurement and treatment. Dose level (DL) 1, 2 3 107 CAR-T cells/m2; DL2, 1 3 108 CAR-T cells/m2;
DL3, 2 3 108 CAR-T cells/m2. One patient received bendamustine (benda) lymphodepletion before
CD30.CAR-T cells at University of North Carolina (UNC), and 2 years later, received cyclophosphamide-
fludarabine (cy-flu) lymphodepletion before CD30.CAR-T cells at Baylor College of Medicine (BCM).
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Pre PreA B6 weeks post 6 weeks post

FIG A3. Antitumor effects of CD30-specific chimeric antigen receptor (CAR) T cells (CD30.CAR-T cells). Two
patients with relapsed Hodgkin lymphoma: (A) one with several bone lesions in the pelvis and elsewhere, and
(B) the other with numerous hypermetabolic lymph nodes, including cervical, right axillary, mediastinal,
portacaval, and retroperitoneal before treatment. Six weeks after CD30.CAR-T cell infusion, positron emission
tomography–computed tomography scan showed complete responses to therapy (Deauville 2).
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FIG A2. (A) Detection of biologicmarkers of cytokine release syndrome (CRS). Fold difference in the plasma levels of (A)
interleukin (IL)-6 and (B) IL-1Ra pre–CD30-specific chimeric antigen receptor (CAR) T cell (CD30.CAR-T cell) infusion
and 2 weeks post–CD30.CAR-T cell infusion or at the time of grade 1 CRS. Each dot denotes a single patient, and the
line represents the mean value. (C) Peak levels of plasma C-reactive protein (CRP) in patients developing grade 1 CRS
versus patients who did not develop CRS. Significance determined using 2-tailed unpaired t test.
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FIG A4. (A) Overall survival (OS) and (B) progression-free survival (PFS) of 37 patients receiving lymphodepletion (LD) with bendamustine alone (benda LD;
blue line), benda and fludarabine (benda-flu; red line), or cyclophosphamide and flu (cy-flu; black line). For this PFS comparison, the patient who received
benda LD before CD30-specific chimeric antigen receptor (CAR) T cells (CD30.CAR-T cells) only and then cy-flu LD before CD30.CAR-T cells 2 years later
was counted in each treatment group. BCM, Baylor College of Medicine; UNC, University of North Carolina.
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FIG A5. Detection of CD30-specific chimeric antigen receptor (CAR) T cells (CD30.CAR-T cells) in the peripheral blood. (A) Detection
of CD30.CAR-T cell molecular signals by quantitative polymerase chain reaction in patients receiving bendamustine (benda) alone as
a lymphodepletion regimen. Data points represent postinfusion intervals after the infusion of CD30.CAR-T cells at different dose levels.
Lines denote mean 6 SEM for the various dose levels and lymphodepletion regimens. (B) Flow plots of CD30.CAR-T cell detection
in the peripheral blood of 2 representative patients using flow cytometry for patients infused with 2 3 108 CAR-T cells/m2

post–benda-fludarabine (flu) at the indicated time point. Upper plots for each donor were gated on lymphocytes and on CD45bright cells.
Lower plots were gated on CD31 cells. (C) Fold increase in plasma levels of interleukin (IL)-15 and IL-7 pre- and postlymphodepletion
with benda versus lymphodepletion with flu and before CD30.CAR-T cell infusions. Each dot denotes a patient, and the line represents
the mean value. P values shown are 2-tailed unpaired t test. CRS, cytokine release syndrome; UNC, University of North Carolina.
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TABLE A1. CD30.CAR-T Cell Product Characteristics for Each Patient Enrolled

Patient No.
CAR

Expression (%)
CD8

Content (%)
Cytotoxic Activity at

20:1 E:T Ratio
Days in
Culture

Days From Product
Manufacturing

Freeze to Treatmenta

UNC

001 94.3 47 68 16 32

002 96.2 94 84 15 91b

003 97.2 52.5 61 15 47

004 98 81 53 16 84c

005 95 65 85 15 70c

006 94 49 97 16 49

007 95.8 91 69 16 28

008 96.2 19.3 77 16 49

009 97 67 44 16 316d

010 97.5 47 24 15 90a

011 98.7 10 68 16 41

012 96.2 52 61 16 104d

013 98.5 55 33 17 30

015 94.8 25 52 17 30

016 92.8 61.5 61 17 66b

018 96 49 78 16 41

019 90 37 97 21 16

020 97.3 32 44 19 23

022 99.8 66 55 20 41

026 98 12 37 20 23

027 97.8 71 54 17 27

028 98 23 74 17 n/ae

030 98.4 42.1 71 20 38

031 99.1 46.6 59 21 31

034 94.5 78.1 100 16 103

035 93.2 54.2 40 17 23

BCM

001 94.8 10.5 56 13 55

002 93.7 18.1 63 10 83

003 96.3 34.8 73 13 48

004 98.2 27.6 32 23 105f

005 99.6 35.4 84 20 174f

006 95.9 9.8 44 13 167f

007 96.4 16.9 54 15 97

008 99.2 17.9 42 17 119f

009 99 16.9 46 10 111f

010 90.2 26.65 60 16 1,692g

011 99.1 43.4 26 13 132f

012 99.8 18.2 58 13 92

013 99.8 34.8 48 13 97

(continued on following page)
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TABLE A1. CD30.CAR-T Cell Product Characteristics for Each Patient Enrolled (continued)

Patient No.
CAR

Expression (%)
CD8

Content (%)
Cytotoxic Activity at

20:1 E:T Ratio
Days in
Culture

Days From Product
Manufacturing

Freeze to Treatmenta

014 98.8 2.95 42 10 237f

015 98.8 38.2 81 13 119f

018 99.6 42.2 28 13 70

020 98.6 30.6 34 13 35

Abbreviations: BCM, Baylor College of Medicine; CD30.CAR-T cell, CD30-specific chimeric antigen receptor (CAR) T cell; E, effector; T, target;
UNC, University of North Carolina.

aQuality Control release takes about 15-20 days.
bDelay because of patient clinical status. Patient 2 was hospitalized locally for infection, and patient 16 required more salvage therapy to

stabilize disease.
cDelay because of scheduling of infusion and requirement for dose level 1 to be cleared.
dDelay because of patient preference for scheduling.
eProduct manufactured, but patients declined infusion.
fDelays were primarily because of the mandatory pauses between the first and second patient at each dose level, and between dose levels.
gThis product had been made under a previous clinical trial but the patient declined infusion at the time; after additional treatment and

progression, the patient became eligible for treatment under the current trial.
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